




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第10章 曲线积分和曲面积分参考解答1、计算下列对弧长的曲线积分: (1),其中L为由Oxy平面上的直线及抛物线所围成区域的边界。第1(1)题解:,(2),L为椭圆,其周长为a。解:注意第一类曲线积分的对称性:若曲线关于x(y)轴对称,而被积函数关于y(x)为奇函数,则曲线积分为零!(3),L为圆周()。解:圆周之参数方程为(),故(4),L为 解:(5),L圆周为解:因,故 2、计算下列对坐标的曲线积分:(1),其中L为折线上从点到点再到点的二线段。 解:,(作代换,知第二个定积分与第一个相等)(2),L是圆周,从z轴正向看去,该圆周取逆时针方向。 解:L的参数方程为,故得3、利用Green公式计算下列曲线积分:(1), L由,与x轴围成,沿逆时针方向。第3(1)题 解:L为封闭曲线,如图所示,直接运用Green公式。()但,故得。从而得(2), L由的正向。第3(2)题解:,。但和在L所围正方形区域内并不连续(在点处两者根本不存在),故不满足Green公式之条件。为此,采用“挖地雷”方法:取以原点为心、(或小于的任意正数)为半径的圆l,并取逆时针方向,如图所示。其参数方程为:于是,l和L所围区域D成为“安全地带”,在D上,P和Q均具有一阶连续偏导数,Green公式成立。于是 因此, 4、计算积分, 其中L是由点沿曲线到点的弧段。第4题解:这里,。因此,在曲线L和线段AB所围闭区域上,曲线积分与路径无关。这里,线段AB的方程为,方向为从点A指向点B。因此,。5、验证是某函数的全微分,并求出这样的一个。 解:这里,故因而,故知为某函数的全微分。以下我们用两种方法来求。方法1(利用曲线积分): 方法2(利用待定函数法):因,故得(将y看作常数)(其中为待定函数,与x无关)于是,但另一方面,故于是得 ,。因此所求函数为,其中C可取任意常数。6、计算下列对面积的曲面积分:(1),其中是锥面在柱体内的部分。 第6(1)题解:(2),其中为球面。解:因关于三个坐标面都是对称的,故,于是利用轮换对称性,因此,(注意球的表面积为)于是得(3),其中为平面被柱面所截下的部分。解: 第 6(3)题7、计算下列对坐标的曲面积分:(1),其中是圆柱面被平面和所截下的部分,取外侧。 第7(1)题 解:被yoz平面分成和两片,对于x轴正向而言,取上侧,而取下侧,它们在yoz平面上的投影区域和如上图所示。于是因此。(2),其中是球面,的外侧。解:利用公式得(3),其中是锥面被,所截部分的外侧。第 7(3)题解:利用公式,得注:第二类曲面积分(对坐标的曲面积分)的解题步骤为“一投”、“二代”、“三定号”。上两题中,我们将积分统一化为在xoy平面投影区域上的二重积分,解题过程得到大大简化。这是在不适合用Gauss公式(曲面不封闭;或即使可以补成封闭,但计算未能得到简化)时常用的方法。否则,像第(1)小题那样,我们往往必须将曲面分块,分别进行投影。选择最优策略,省出宝贵时间,去做更多事情,不亦乐乎?8、利用Gauss公式计算曲面积分:(1),其中为平面,所围立体表面的外侧。解:(2),其中为下半球面的上侧。解:补一圆面:,取下侧。于是注意封闭曲面取内侧,与Gauss公式所要求的外侧相反,故第二个等式右边三重积分前有一个负号!9、求向量场在点处的散度。解:10、设流体密度为1,流速,求单位时间内从曲面 的下侧流向上侧的流量。解:将曲面记为(为旋转抛物面),补一取下侧的圆面:。于是注意封闭曲面取内侧,与Gauss公式所要求的外侧相反,故第三个等式右边三重积分前有一个负号!11、设,求的旋度,并计算曲面积分,其中为锥面,其法向量与z轴正向夹角为锐角。解:可用两种方法来计算。解法1(创造条件,运用Gauss公式)(第一类曲面积分)(第二类曲面积分)(其中为圆面之下侧,封闭曲面取外侧)(Gauss公式)(二重积分之极坐标算法)解法2(直接运用Stokes公式)(上侧)之边界线L为xoy平面上半径为2的圆,取逆时针方向,其参数方程为,于是12、用Stokes公式计算,其中为圆周,从x轴正向看,取逆时针方向。解:记,所围圆面为,取上侧。则(转化为第一类曲面积分)注意到平面之法向量为,故,因此得13、求,L为空间螺线。 解:14、设函数在XOY平面上具有一节连续偏导数,曲线积分与路径无关,并且对任意t,恒有,求。解:因曲线积分与路径无关,故有。故可设,其中为与x无关的待定函数。于是因,故得即,从而得,或即。因此。15、确定常数,使在右半平面上的向量为某二元函数的梯度,并求。解:向量为某二元函数的梯度,等价于说:存在某二元函数,使得,也就是说,为某二元函数的全微分。根据曲线积分与路径无关的条件,得即整理得故得。由得从而另一方面,。故得,。因此。16
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高层住房施工安全协议书4篇
- 外聘专家聘用合同范本
- 私人木工施工合同范本
- 房地产配套工程施工合作合同6篇
- 苏州市高二上学期语文期末考试试卷及答案
- 2025年皮肌炎的试题及答案
- 焊工考证题库及答案
- 2025年陕西省建设系统事业单位人员招聘考试题库及答案解析
- 2025年小学试卷试题及答案
- 按摩师考试题及答案
- 2025年财会类考试-精算师-寿险精算实务历年参考题库含答案解析(5卷100道集合-单选题)
- 道路桥梁施工管理课件
- 煤矿调度员管理课件
- 湖北省砂石经营管理办法
- 脊髓梗死护理课件
- 洞穴探险活动方案
- 线长考试题库及答案
- 初中生叛逆期心理健康教育课堂
- 专项施工方案台账
- 传奇游戏活动方案
- 猪场工作应聘简历
评论
0/150
提交评论