




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
大一(上) 微积分 知识点第1章 函数1、 AB=,则A、B是分离的。二、设有集合A、B,属于A而不属于B的所有元素构成的集合,称为A与B的差。 A-B=x|xA且xB(属于前者,不属于后者)三、集合运算律:交换律、结合律、分配律与数的这三定律一致; 摩根律:交的补等于补的并。四、笛卡尔乘积:设有集合A和B,对xA,yB,所有二元有序数组(x,y)构成的集合。五、相同函数的要求:定义域相同对应法则相同六、求反函数:反解互换七、关于函数的奇偶性,要注意:1、函数的奇偶性是就函数的定义域关于原点对称时而言的,若函数的定义域关于原点不对称,则函数无奇偶性可言,那么函数既不是奇函数也不是偶函数;2、判断函数的奇偶性一般是用函数奇偶性的定义:若对所有的,成立,则为偶函数;若对所有的,成立,则为奇函数;若或不能对所有的成立,则既不是奇函数也不是偶函数;3、奇偶函数的运算性质:两偶函数之和是偶函数;两奇函数之和是奇函数;一奇一偶函数之和是非奇非偶函数(两函数均不恒等于零);两奇(或两偶)函数之积是偶函数;一奇一偶函数之积是奇函数。第2章 极限与连续一、一个数列有极限,就称这个数列是收敛的,否则就称它是发散的。二、极限存在定理:左、右极限都存在,且相等。三、无穷小量的几个性质:1、=0,则2、若=0,则3、若=0,则4、若g(x)有界(|g(x)|M),且=0,则g(x)=0四、无穷小量与无穷大量的关系:若y是无穷大量,则是无穷小量;若y(y0)是无穷小量,则是无穷大量。5、 无穷小量的阶数比较(假设):若 称f(x)是较g(x)高阶的无穷小量;若 称f(x)是较g(x)低阶的无穷小量;若 称f(x)是较g(x)同阶的无穷小量;若 称f(x)是较g(x)等价的无穷小量,记为。六、极限的运算法则:= = = 七、求极限的几种技巧:当极限过程是时,除以最高次项;当带有根号时,进行有理化;当遇到分式的加、减运算时,进行通分;当极限过程是时,分子最高次项的指数低于分母最高次项的指数时,结果为0;分子最高次项的指数高于分母最高次项的指数时,结果为;分子、分母最高次项的指数相等时,结果为最高次项的系数比。八、两个重要极限: 九、等价无穷小量(乘积的时候才可以换): 十、证明在某一点处连续:需证明十一、出现函数的间断点的情况:在点处没有定义;不存在;虽然有定义,且存在,但十二、间断点分类:1、 第一类间断点:如果函数在点处的左、右极限都存在,但不全等于,就称点为的第一类间断点。可去间断点(属于第一类间断点):函数间断点的左、右极限存在并相等,只是不等于该点的函数值,那么我们可以重新定义函数在间断点的值,使得所形成的函数,在该点连续。跳跃间断点(属于第一类间断点):函数间断点的左、右极限存在但不相等。2、 第二类间断点:如果函数在点处的左、右极限至少有一个不存在,就称点为的第二类间断点。无穷间断点(属于第二类间断点):只要左右极限有一个为。振荡间断点13、 介值定理:如果函数在闭区间上连续,m和M分别为在上的最小值和最大值,则对介于m与M之间的任一实数c(即),至少存在一点,使得。推论:如果函数在闭区间上连续,且与异号,则至少存在一点,使得。第3章 导数与微分1、在处不可导(就在处不可导)第5章 不定积分一、基本积分公式表:1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、二、一般地,如被积函数含有,令=t,可以消去根号,如被积函数含有,令=t,k为m与n的最小公倍数,可同时消去两个根号。三、三角代换:被积函数含有,可作代换或被积函数含有,可作代换或被积函数含有,可作代换或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建三明市属国企招聘项目负责人笔试历年参考题库附带答案详解
- 2025甘肃中电瓜州风力发电有限公司校园招聘笔试历年参考题库附带答案详解
- 2025河南南阳市西峡县宜居城镇工程建设有限公司招聘(第七号)笔试历年参考题库附带答案详解
- 2025年福建一建物业管理有限公司招聘劳务派遣工作人员笔试历年参考题库附带答案详解
- 2025安徽淮南焦岗湖投资集团有限公司政府投资工程审计人员招聘拟聘用人员笔试历年参考题库附带答案详解
- 2025广西河池市招聘中小学幼儿园教师565人模拟试卷及答案详解(名师系列)
- 2025广西柳州市柳江中学参加广西师范大学2025届研究生毕业生春季专场双选会招聘11人考前自测高频考点模拟试题及答案详解(易错题)
- 2025年上半年全省事业单位公开招聘工作人员(含教师)笔试南充考区模拟试卷及答案详解参考
- 2025江苏盐城工业职业技术学院招聘专职辅导员6人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025年甘肃省卫生健康委系统招聘工作人员网上缴费考前自测高频考点模拟试题附答案详解(黄金题型)
- 杜仲种植深加工项目可行性研究报告-备案立项
- 2025年乡村文化旅游发展报告:文旅融合下的乡村旅游生态旅游规划与实施研究
- 2025-2030中国在线总有机碳(TOC)分析仪行业市场现状供需分析及投资评估规划分析研究报告
- 英语教学课件Unit 2 Different families课件9
- 医学综述研究进展汇报
- 2025春 新人教版美术小学一年级下册致敬平凡
- 危险废物分析制度
- 换药室工作制度
- 水资源开发与保护联合协议
- 《急性心肌梗死急诊》课件
- 2025年保洁员(高级)理论考试题(附答案)
评论
0/150
提交评论