




已阅读5页,还剩97页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
电脑的配置,主要看CPU、显卡、主板、内存、硬盘、显示器等CPU和中央处理器是同义词,已合并。 中央处理器百科名片 intel和AMD主流CPU和CPU插槽中央处理器(英文Central Processing Unit,CPU)是一台计算机的运算核心和控制核心。CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU由运算器、控制器和寄存器及实现它们之间联系的数据、控制及状态的总线构成。差不多所有的CPU的运作原理可分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。 CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码,并执行指令。所谓的计算机的可编程性主要是指对CPU的编程。目录工作原理 提取 解码 执行 写回基本结构 运算逻辑部件 寄存器部件 控制部件发展历史 1971年: 4004 微处理器 1972年: 8008 微处理器 1974年: 8080 微处理器 1978年: 8086、8088 微处理器 1982年: 80286 微处理器 1985年: 80386 微处理器 1989年: Intel 80486微处理器 1993年: Intel Pentium 处理器 1996年:Intel Pentium Pro处理器 1997年: Intel Pentium II 处理器 1998年:Intel Celeron 处理器 1998年:Intel Celeron 300A处理器 1999年: Intel Pentium III 处理器 2000年: Intel Pentium 4 处理器 2002年: Intel Pentium 4 HT处理器 2003年:Intel Pentium M处理器 2005年: Intel Pentium D 处理器 2006年: Intel Core 2 Duo处理器 2008年:Intel Atom处理器 2008年:Intel Core i7处理器 2009年:Intel Core i5处理器 2010年:Intel Core i3处理器 2011年: Intel Sandy Bridge处理器 2012年: Intel ivy Bridge处理器 AMD性能指标 主频 外频 前端总线(FSB)频率 倍频系数 缓存 CPU扩展指令集 CPU内核和I/O工作电压技术架构 制造工艺 指令集 超流水线与超标量 封装形式 多线程 多核心 SMP NUMA技术 乱序执行技术 分枝技术 CPU内部的内存控制器包装方式 原装识别工作原理 提取 解码 执行 写回基本结构 运算逻辑部件 寄存器部件 控制部件发展历史 1971年: 4004 微处理器 1972年: 8008 微处理器 1974年: 8080 微处理器 1978年: 8086、8088 微处理器 1982年: 80286 微处理器 1985年: 80386 微处理器 1989年: Intel 80486微处理器 1993年: Intel Pentium 处理器 1996年:Intel Pentium Pro处理器 1997年: Intel Pentium II 处理器 1998年:Intel Celeron 处理器 1998年:Intel Celeron 300A处理器 1999年: Intel Pentium III 处理器 2000年: Intel Pentium 4 处理器 2002年: Intel Pentium 4 HT处理器 2003年:Intel Pentium M处理器 2005年: Intel Pentium D 处理器 2006年: Intel Core 2 Duo处理器 2008年:Intel Atom处理器 2008年:Intel Core i7处理器 2009年:Intel Core i5处理器 2010年:Intel Core i3处理器 2011年: Intel Sandy Bridge处理器 2012年: Intel ivy Bridge处理器 AMD性能指标 主频 外频 前端总线(FSB)频率 倍频系数 缓存 CPU扩展指令集 CPU内核和I/O工作电压技术架构 制造工艺 指令集 超流水线与超标量 封装形式 多线程 多核心 SMP NUMA技术 乱序执行技术 分枝技术 CPU内部的内存控制器包装方式 原装识别展开编辑本段工作原理CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码。它把指令分解成一系列的微操作,然后发出各种控制命令,执行微操作系列,从而完成一条指令的执行。 指令是计算机规定执行操作的类型和操作数的基本命令。指令是由一个字节或者多个字节组成,其中包括操作码字段、一个或多个有关操作数地址的字段以及一些表征机器状态的状态字以及特征码。有的指令中也直接包含操作数本身。 提取第一阶段,提取,从存储器或高速缓冲存储器中检索指令(为数值或一系列数值)。由程序计数器(Program Counter)指定存储器的位置,程序计数器保存供识别目前程序位置的数值。换言之,程序计数器记录了CPU在目前程序里的踪迹。 提取指令之后,程序计数器根据指令长度增加存储器单元。指令的提取必须常常从相对较慢的存储器寻找,因此导致CPU等候指令的送入。这个问题主要被论及在现代处理器的快取和管线化架构。 解码CPU根据存储器提取到的指令来决定其执行行为。在解码阶段,指令被拆解为有意义的片断。根据CPU的指令集架构(ISA)定义将数值解译为指令。 一部分的指令数值为运算码(Opcode),其指示要进行哪些运算。其它的数值通常供给指令必要的信息,诸如一个加法(Addition)运算的运算目标。这样的运算目标也许提供一个常数值(即立即值),或是一个空间的定址值:暂存器或存储器位址,以定址模式决定。 在旧的设计中,CPU里的指令解码部分是无法改变的硬件设备。不过在众多抽象且复杂的CPU和指令集架构中,一个微程序时常用来帮助转换指令为各种形态的讯号。这些微程序在已成品的CPU中往往可以重写,方便变更解码指令。 执行在提取和解码阶段之后,接着进入执行阶段。该阶段中,连接到各种能够进行所需运算的CPU部件。 例如,要求一个加法运算,算术逻辑单元(ALU,Arithmetic Logic Unit)将会连接到一组输入和一组输出。输入提供了要相加的数值,而输出将含有总和的结果。ALU内含电路系统,易于输出端完成简单的普通运算和逻辑运算(比如加法和位元运算)。如果加法运算产生一个对该CPU处理而言过大的结果,在标志暂存器里,运算溢出(Arithmetic Overflow)标志可能会被设置。 写回最终阶段,写回,以一定格式将执行阶段的结果简单的写回。运算结果经常被写进CPU内部的暂存器,以供随后指令快速存取。在其它案例中,运算结果可能写进速度较慢,但容量较大且较便宜的主记忆体中。某些类型的指令会操作程序计数器,而不直接产生结果。这些一般称作“跳转”(Jumps),并在程式中带来循环行为、条件性执行(透过条件跳转)和函式。 许多指令也会改变标志暂存器的状态位元。这些标志可用来影响程式行为,缘由于它们时常显出各种运算结果。 例如,以一个“比较”指令判断两个值的大小,根据比较结果在标志暂存器上设置一个数值。这个标志可藉由随后的跳转指令来决定程式动向。 在执行指令并写回结果之后,程序计数器的值会递增,反覆整个过程,下一个指令周期正常的提取下一个顺序指令。如果完成的是跳转指令,程序计数器将会修改成跳转到的指令位址,且程序继续正常执行。许多复杂的CPU可以一次提取多个指令、解码,并且同时执行。这个部分一般涉及“经典RISC管线”,那些实际上是在众多使用简单CPU的电子装置中快速普及(常称为微控制(Microcontrollers)。 编辑本段基本结构CPU包括运算逻辑部件、寄存器部件和控制部件等。 运算逻辑部件运算逻辑部件,可以执行定点或浮点的算术运算操作、移位操作以及逻辑操作,也可执行地址的运算和转换。 寄存器部件寄存器部件,包括通用寄存器、专用寄存器和控制寄存器。 32位CPU的寄存器通用寄存器又可分定点数和浮点数两类,它们用来保存指令中的寄存器操作数和操作结果。 通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。 专用寄存器是为了执行一些特殊操作所需用的寄存器。 控制寄存器通常用来指示机器执行的状态,或者保持某些指针,有处理状态寄存器、地址转换目录的基地址寄存器、特权状态寄存器、条件码寄存器、处理异常事故寄存器以及检错寄存器等。 有的时候,中央处理器中还有一些缓存,用来暂时存放一些数据指令,缓存越大,说明CPU的运算速度越快,目前市场上的中高端中央处理器都有2M左右的二级缓存,高端中央处理器有4M左右的二级缓存。 控制部件控制部件,主要负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。 其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。 微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。 简单指令是由(35)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。 逻辑硬布线控制器则完全是由随机逻辑组成。指令译码后,控制器通过不同的逻辑门的组合,发出不同序列的控制时序信号,直接去执行一条指令中的各个操作。 编辑本段发展历史1971年: 4004 微处理器Intel在1969年为日本计算机制造商Busicom的一项专案,着手开发第一款微处理器,为一系列可程式化计算机研发多款晶片。最终,英特尔在1971年11月15日向全球市场推出4004微处理器,当年Intel 4004处理器每颗售价为200美元。4004 是英特尔第一款微处理器,为日后开发系统智能功能以及个人电脑奠定发展基础,其晶体管数目约为2千3百颗。 1972年: 8008 微处理器翌年,Intel推出8008微处理器,其运算威力是4004的两倍。Radio Electronics于1974年刊载一篇文章介绍一部采用8008的Mark-8装置,被公认是第一部家用电脑,在当时的标准来看,这部电脑在制造、维护、与运作方面都相当困难。Intel 8008晶体管数目约为3千5百颗。 1974年: 8080 微处理器1974年,Intel推出8080处理器,并作为Altair个人电脑的运算核心,Altair在星舰奇航电视影集中是企业号太空船的目的地。电脑迷当时可用395美元买到一组Altair的套件。它在数个月内卖出数万套,成为史上第一款下订后制造的机种。Intel 8080晶体管数目约为6千颗。 1978年: 8086、8088 微处理器取得IBM新成立之个人电脑部门敲定的重要销售合约,让Intel 8088处理器成为IBM新款畅销产品 ,IBM个人电脑的大脑,Intel 8088处理器的成功将英特尔拱上财富杂志500大企业排行榜,财富杂志将英特尔评为 “70年代最成功的企业”之一。Intel 8088晶体管数目约为29,000。 1982年: 80286 微处理器80286(也被称为286)是英特尔首款能执行所有旧款处理器专属软件的处理器,这种软件相容性之后成为英特尔全系列微处理器的注册商标,在6年的销售期中,估计全球各地共安装了1500万部286个人电脑。Intel 80286处理器晶体管数目为13万4千颗。 1985年: 80386 微处理器Intel 80386微处理器内含275,000 个晶体管比当初的4004多了100倍以上,这款32位元处理器首次支持多工任务设计,能同时执行多个程序。Intel 80386晶体管数目约为27万5千颗。 1989年: Intel 80486微处理器Intel 80486处理器世代让电脑从命令列转型至点选式(point to click)的图形化操作环境,据史密森美国历史博物馆的科技史学家David K. Allison回忆道:“当时我拥有第一部彩色萤幕电脑,开始能以大幅加快的速度进行桌面排版作业。”Intel 80486处理器率先内建数学协同处理器,由于能扮演中央处理器处理复杂数学运算,因此能加快整体运算的速度。Intel 80486晶体管数目为120万颗。 1993年: Intel Pentium 处理器Pentium是Intel首个放弃利用数字来命名的处理器产品,在微架构上取得突破,让电脑更容易处理 “现实世界”的资料,例如语音、声音、书写、以及相片影像。源自漫画与电视脱口秀的Pentium,在问市后立即成为家喻户晓的名字,Intel Pentium处理器晶体管数目为310万颗。 1996年:Intel Pentium Pro处理器初步占据了一部分CPU市场的INTEL并没有停下自己的脚步,在其他公司还在不断追赶自己的奔腾之际,又在1996年推出了最新一代的第六代X86系列CPU枣P6。P6只是它的研究代号,上市之后P6有了一个非常响亮的名字枣PentimuPro。PentimuPro的内部含有高达550万个的晶体管,内部时钟频率为133MHZ,处理速度几乎是100MHZ的PENTIUM的2倍。PentimuPro的一级(片内)缓存为8KB指令和8KB数据。值得注意的是在PentimuPro的一个封装中除PentimuPro芯片外还包括有一个256KB的二级缓存芯片,两个芯片之间用高频宽的内部通讯总线互连,处理器与高速缓存的连接线路也被安置在该封装中,这样就使高速缓存能更容易地运行在更高的频率上。PentiumPro 200MHZ CPU的L2CACHE就是运行在200MHZ,也就是工作在与处理器相同的频率上。这样的设计领PentiumPro达到了最高的性能。而PentimuPro最引人注目的地方是它具有一项称为“动态执行”的创新技术,这是继PENTIUM在超标量体系结构上实现实破之后的又一次飞跃。PentimuPro系列的工作频率是150/166/180/200,一级缓存都是16KB,而前三者都有256KB的二级缓存,至于频率为200的CPU还分为三种版本,不同就在于他们的内置的缓存分别是256KB,512KB,1MB。 1997年: Intel Pentium II 处理器内含750万个晶体管的Pentium II处理器结合了Intel MMX技术,能以极高的效率处理影片、音效、以及绘图资料,首次采用Single Edge Contact (S.E.C) 匣型封装,内建了高速快取记忆体。这款晶片让电脑使用者撷取、编辑、以及透过网际网络和亲友分享数位相片、编辑与新增文字、音乐或制作家庭电影的转场效果、使用视讯电话以及透过标准电话线与网际网络传送影片,Intel Pentium II处理器晶体管数目为750万颗。 1998年:Intel Celeron 处理器1998 年,AMD的低价政策奏效,以 1/3 于 Intel 同时脉处理器的价格,成功的大举入侵低价处理器市场,当时基本型电脑 (NT$:30,00025,000-) 大行其道,加上 AMD 的 K6-2 处理器本身的整数运算能力优,非常适合一般家庭的基本需求,各大厂纷纷推出 Socket-7 平台的低价电脑。 这段期间,Intel 为了完全主导下一代处理器走向,宣布放弃 Socket-7 架构,和美国国家半导体共同发表了新一代架构 - Slot-1,并且推出全新架构的处理器 - Pentium II,虽然这款处理器,成功的打入主流市场,不过昂贵的 Pentium II,加上昂贵的主机板,使得 Intel 完全失去低价市场的这块大饼。 为了入侵这块市场,推出新款的低价处理器投入战场,是必须的,但设计一款新的处理器,所需要投资的初期研发成本相当高,所以 Intel 打算从原有的 Pentium II 处理器着手,在 1998 年3月的时候,Intel 正式推出新款处理器 - Celeron。 当初推出的 Celeron 处理器,架构上维持和 Pentium II 相同 (Deschutes),采用 Slot-1,核心架构也和 Pentium II 一样,具有 MMX 多媒体指令集,但是原本在 Pentium II 上的两颗 L2 快取记忆体则取消了。 Intel 拿掉 L2 快取,除了可以降低成本之外,最主要是为了和当时的主流 Pentium II 在效能上有所分别,除了 L2 快取,处理器的外部工作频率 (Front Side BUS),也是 Intel 用来区分主流与低价处理器的分水岭:当时 Intel Pentium II 处理器的外频为 100 MHz (最早是 Pentium II 350),而属于低价的 Celeron 则是维持传统的 66 MHz。 Celeron 的核心架构,和 Pentium II 完全相同,只是少了 L2 快取,这对整体效能上的影响,到底大不大 ? 看看今天的 P3c 大家心理应该就有个底了,举例来说,核心时脉同样为 500 MHz 的 P3 处理器,外频相同的状态下,On-Die 256K 全速 L2 快取记忆体的 P3 500E,效能上硬是比 P3 500 的半速 512K L2 快取要来的快,光是 L2 快取的速度,就有如此大的影响 (先撇开 ATC 以及 ASB 不谈),更何况是没有L2 快取记忆体。 Cache-less 的 Celeron 低价处理器,刚刚推出时,目标放在低价电脑上,由于采用 Slot-1 架构,当时可以搭配的主机板晶片组只有 440 LX 以及 440BX,不过这类型的主机板,都是以搭配 Pentium II 为主,价位上也难以压低,加上 Cache-Less 的 Celeron 处理器,在 Winstone 测试中,成绩低的可怜,所以,Intel 最早推出的 Celeron 266/300 MHz,在效能上一直为大家所唾弃。 1998年:Intel Celeron 300A处理器1998年8月24日,这个日子让像笔者这样热爱硬件的人们都会无法忘记,Intel推出了装有二级高速缓存的赛扬A处理器,这就是日后被众多DIYer捧上神坛的赛扬300A,一个让经典不能再经典的型号。 赛扬300A,从某种意义上已经是Intel的第二代赛扬处理器。第一代的赛扬处理器仅仅拥有266MHz、300MHz两种版本,第一代的Celeron处理器由于不拥有任何的二级缓存,虽然有效的降低了成本,但是性能也无法让人满意。为了弥补性能上的不足,Intel终于首次推出带有二级缓存的赛扬处理器采用Mendocino核心的Celeron300A、333、366。经典,从此诞生。 赛扬300A的经典,并不仅仅是因为它的超频(多数赛扬300A可以轻松超频至550MHZ),还在于赛扬300A的超频性几乎造就了一条专门为它而生的产业链,主板、转接卡.有多少这样的产品就为了赛扬300A而生。一时间,报纸杂志网络媒体都在讨论这款Celeron300A的超频方式、技巧、配合主板、内存等等。DIY的超频时代正式到临。 1999年: Intel Pentium III 处理器Intel Pentium III 处理器加入70个新指令,加入网际网络串流SIMD延伸集称为MMX,能大幅提升先进影像、3D、串流音乐、影片、语音辨识等应用的性能,它能大幅提升网际网络的使用经验,让使用者能浏览逼真的线上博物馆与商店,以及下载高品质影片,Intel首次导入0.25微米技术,Intel Pentium III晶体管数目约为950万颗。 2000年: Intel Pentium 4 处理器采用Pentium 4处理器内建了4200万个晶体管,以及采用0.18微米的电路,首款微处理器Intel 4004的运作频率为108KHz,Pentium 4初期推出版本的速度就高达1.5GHz,若汽车速度在同一时期以相同的速度向上攀升,从旧金山开车到纽约仅仅需要13秒,Pentium 4处理器晶体管数目约为4200万颗,翌年8月,Pentium 4 处理理达到2 GHz的里程碑。 2002年: Intel Pentium 4 HT处理器英特尔推出新款Intel Pentium 4处理器内含创新的Hyper-Threading(HT)超线程技术。超线程技术打造出新等级的高性能桌上型电脑,能同时快速执行多项运算应用,或针对支持多重线程的软件带来更高的性能。超线程技术让电脑性能增加25%。除了为桌上型电脑使用者提供超线程技术外,英特尔也达成另一项电脑里程碑,就是推出运作频率达3.06 GHz的Pentium 4处理器,是首款每秒执行30亿个运算周期的商业微处理器,如此优异的性能要归功于当时业界最先进的0.13微米制程技术,翌年,内建超线程技术的Intel Pentium 4处理器频率达到3.2 GHz。 2003年:Intel Pentium M处理器由以色列小组专门设计的新型移动CPU,Pentium M是英特尔公司的x86架构微处理器,供笔记簿型个人电脑使用,亦被作为Centrino的一部分,于2003年3月推出。公布有以下主频:标准1.6GHz,1.5GHz,1.4GHz,1.3GHz,低电压1.1GHz,超低电压900MHz。为了在低主频得到高效能,Banias作出了优化,使每个时钟所能执行的指令数目更多,并通过高级分支预测来降低错误预测率。另外最突出的改进就L2高速缓存增至1MB(P3-M和P4-M都只有512KB),估计Banias数目高达7700万的晶体管大部分就用在这上。此外还有一系列与减少功耗有关的设计:增强型Speedstep技术是必不可少的了,拥有多个供电电压和计算频率,从而使性能可以更好地满足应用需求。 智能供电分布可将系统电量集中分布到处理器需要的地方,并关闭空闲的应用;移动电压定位(MVPIV)技术可根据处理器活动动态降低电压,从而支持更低的散热设计功率和更小巧的外形设计;经优化功率的400MHz系统总线;Microopsfusion微操作指令融合技术,在存在多个可同时执行的指令的情况下,将这些指令合成为一个指令,以提高性能与电力使用效率。专用的堆栈管理器,使用记录内部运行情况的专用硬件,处理器可无中断执行程序。Banias所对应的芯片组为855系列,855芯片组由北桥芯片855和南桥芯片ICH4-M组成,北桥芯片分为不带内置显卡的855PM(代号Odem)和带内置显卡的855GM(代号Montara-GM),支持高达2GB的DDR266/200内存,AGP4X,USB2.0,两组ATA-100、AC97音效及Modem。其中855GM为三维及显示引擎优化InternalClockGating,它可以在需要时才进行三维显示引擎供电,从而降低芯片组的功率。 2005年: Intel Pentium D 处理器首颗内含2个处理核心的Intel Pentium D 处理器登场,正式揭开x86处理器多核心时代。 2006年: Intel Core 2 Duo处理器Core微架构桌面处理器,核心代号Conroe将命名为Core 2 Duo/Extreme家族,其E6700 2.6GHz型号比先前推出之最强的Intel Pentium D 960 (3.6GHz)处理器,在性能方面提升了40%,省电效率也增加40%,Core 2 Duo处理器内含2.91亿个晶体管。 2008年:Intel Atom处理器2008年6月3日,英特尔在北京向媒体介绍了他们与台北电脑展上同步推出的凌动处理器Atom。英特尔凌动处理采用45纳米制造工艺,2.5瓦超低功耗,价格低廉且性能满足基本需求,主要为上网本(Netbook)和上网机(Nettop)使用。作为具有简单易用、经济实惠的新型上网设备上网本和上网机,他们主要具有较好的互联网功能,还可以进行学习、娱乐、图片、视频等应用,是经济与便携相结合的新电脑产品。其最具代表性的产品为半年前华硕率先推出的Eee PC电脑,而现在戴尔、宏基、惠普等众多厂商也纷纷推出同类产品,行业对该市场前景乐观。这次推出的英特尔凌动处理器分为两款,为上网本设计的凌动N270与为上网机设计的凌动230,搭配945GM芯片组,可以满足基本的视频、图形、浏览需求,并且体积小巧,同时价格能控制在低于主流电脑的价位。据英特尔核算,采用凌动处理器的上网本可以做到低至250美元左右,而上网机则不会超过300美元。 会上英特尔展示了以长城、海尔、同方为代表的上网机和上网本设备。其中一款同方的上网机售价预计在1999元左右,主要用于连接液晶电视,通过遥控器进行各种上网和数码应用,并具备安装XP系统进行电脑应用的能力。而多款国产上网本售价还并未公布,但估计定价会在2999元左右以赢得市场。 2008年:Intel Core i7处理器Intel官方正式确认,基于全新Nehalem架构的新一代桌面处理器将沿用“Core”(酷睿) 名称,命名为“Intel Core i7”系列,至尊版的名称是“Intel Core i7 Extreme”系列。Core i7(中文:酷睿 i7,核心代号:(Bloomfield)处理器是英特尔于2008年推出的64位四核心CPU,沿用x86-64指令集,并以Intel Nehalem微架构为基础,取代Intel Core 2系列处理器。Nehalem曾经是Pentium 4 10 GHz版本的代号。Core i7的名称并没有特别的含义,Intel表示取i7此名的原因只是听起来悦耳,“i”的意思是智能(intelligence的首字母),而7则没有特别的意思,更不是指第7代产品。而Core就是延续上一代Core处理器的成功,有些人会以“爱妻”昵称之。官方的正式推出日期是2008年11月17日。早在11月3日,官方己公布相关产品的售价,网上评测亦陆续被解封。 2009年:Intel Core i5处理器酷睿i5处理器是英特尔的一款产品,同样建基于Intel Nehalem微架构。与Core i7支持三通道存储器不同,Core i5只会集成双通道DDR3存储器控制器。另外,Core i5会集成一些北桥的功能,将集成PCI-Express控制器。接口亦与Core i7的LGA 1366不同,Core i5采用全新的LGA 1156。处理器核心方面,代号Lynnfiled,采用45纳米制程的Core i5会有四个核心,不支持超线程技术,总共仅提供4个线程。L2缓冲存储器方面,每一个核心拥有各自独立的256KB,并且共享一个达8MB的L3缓冲存储器。芯片组方面,会采用Intel P55(代号:IbexPeak)。它除了支持Lynnfield外,还会支持Havendale处理器。后者虽然只有两个处理器核心,但却集成了显示核心。P55会采用单芯片设计,功能与传统的南桥相似,支持SLI和Crossfire技术。但是,与高端的X58芯片组不同,P55不会采用较新的QPI连接,而会使用传统的DMI技术1。接口方面,可以与其他的5系列芯片组兼容2。它会取代P45芯片组。 2010年:Intel Core i3处理器酷睿i3作为酷睿i5的进一步精简版,是面向主流用户的CPU家族标识。拥有Clarkdale(2010年)、Arrandale(2010年)、Sandy Bridge(2011年)等多款子系列。 2011年: Intel Sandy Bridge处理器SNB(Sandy Bridge)是英特尔在2011年初发布的新一代处理器微架构,这一构架的最大意义莫过于重新定义了“整合平台”的概念,与处理器“无缝融合”的“核芯显卡”终结了“集成显卡”的时代。 这一创举得益于全新的32nm制造工艺。由于Sandy Bridge 构架下的处理器采用了比之前的45nm工艺更加先进的32nm制造工艺,理论上实现了CPU功耗的进一步降低,及其电路尺寸和性能的显著优化,这就为将整合图形核心(核芯显卡)与CPU封装在同一块基板上创造了有利条件。 此外,第二代酷睿还加入了全新的高清视频处理单元。视频转解码速度的高与低跟处理器是有直接关系的,由于高清视频处理单元的加入,新一代酷睿处理器的视频处理时间比老款处理器至少提升了30%。 2012年: Intel ivy Bridge处理器在2012年4月24日下午北京天文馆,intel正式发布了ivy bridge(IVB)处理器。22nm Ivy Bridge会将执行单元的数量翻一番,达到最多24个,自然会带来性能上的进一步跃进。Ivy Bridge会加入对DX11的支持的集成显卡。另外新加入的XHCI USB 3.0控制器则共享其中四条通道,从而提供最多四个USB 3.0,从而支持原生USB3.0。cpu的制作采用3D晶体管技术的CPU耗电量会减少一半。 AMD1981年,AMD 287 FPU,使用Intel80287 核心。产品的市场定位和性能与Intel80287 基本相同。也是迄今为止AMD 公司唯一生产过的FPU产品,十分稀有。 AMD 8080(1974年)、8085(1976年)、8086(1978年)、8088(1979年)、80186(1982年)、80188、80286微处理器,使用Intel8080 核心。产品的市场定位和性能与Intel同名产品基本相同。 AMD 386(1991年)微处理器,核心代号P9,有SX 和DX 之分,分别与Intel80386SX 和DX 相兼容的微处理器。AMD 386DX与Intel 386DX同为32位处理器。不同的是AMD 386SX是一个完全的16位处理器,而Intel 386SX是一种准32位处理器(内部总线32位,外部16位)。AMD 386DX的性能与Intel80386DX相差无己,同为当时的主流产品之一。AMD也曾研发了386 DE等多种型号基于386核心的嵌入式产品。 AMD 486DX(1993年)微处理器,核心代号P4,AMD 自行设计生产的第一代486产品。而后陆续推出了其他486级别的产品,常见的型号有:486DX2,核心代号P24;486DX4,核心代号P24C;486SX2,核心代号P23等。其它衍生型号还有486DE、486DXL2等,比较少见。AMD 486的最高频率为120MHz(DX4-120),这是第一次在频率上超越了强大的竞争对手Intel 。 AMD 5X86(1995年)微处理器,核心代号X5,AMD 公司在486市场的利器。486时代的后期,TI(德州仪器)推出了高性价比的TI486DX2-80,很快占领了中低端市场,Intel 也推出了高端的Pentium系列。AMD为了抢占市场的空缺,便推出了5x86系列CPU(几乎是与Cyrix 5x86同时推出)。它是486级最高频的产品-33*4、133MHz,0.35微米制造工艺,内置16KB一级回写缓存,性能直指Pentium75,并且功耗要小于Pentium。 AMD K5(1997年)微处理器,1997年发布。因为研发问题,其上市时间比竞争对手Intel的奔腾晚了许多,再加上性能并不十分出色,这个不成功的产品一度使得AMD 的市场份额大量丧失。K5的性能非常一般,整数运算能力比不上Cyrix x86,但比奔腾略强;浮点预算能力远远比不上奔腾,但稍强于Cyrix 6x86。综合来看,K5属于实力比较平均的产品,而上市之初的低廉的价格比其性能更加吸引消费者。另外,最高端的K5-RP200产量很小,并且没有在中国大陆销售。 AMD K6(1997年)处理器是与Intel PentiumMMX同档次的产品。是AMD 在收购了NexGen,融入当时先进的NexGen 686技术之后的力作。它同样包含了MMX指令集以及比Pentium MMX整整大出一倍的64KB的L1缓存!整体比较而言,K6是一款成功的作品,只是在性能方面,浮点运算能力依旧低于Pentium MMX 。 K6-2(1998年)系列微处理器曾经是AMD的拳头产品,现在我们称之为经典。为了打败竞争对手Intel,AMD K6-2系列微处理器在K6的基础上做了大幅度的改进,其中最主要的是加入了对3DNow!指令的支持。3DNow!指令是对X86体系的重大突破,此项技术带给我们的好处是大大加强了计算机的3D处理能力,带给我们真正优秀的3D表现。当你使用专门3DNow!优化的软件时就能发现,K6-2的潜力是多么的巨大。而且大多数K6-2并没有锁频,加上0.25微米制造工艺带给我们的低发热量,能很轻松的超频使用。也就是从K6-2开始,超频不再是Intel的专有名词。同时,K6-2也继承了AMD 一贯的传统,同频型号比Intel 产品价格要低25% 左右,市场销量惊人。K6-2系列上市之初使用的是K6 3D这个名字(3D即3DNow!),待到正式上市才正名为K6-2。正因为如此,大多数K6 3D为ES(少量正式版,毕竟没有量产)。K6 3D曾经有一款非标准的250MHz 产品,但是在正式的K6-2系列中并没有出现。K6-2的最低频率为200MHz,最高达到550MHz。 AMD 于1999年2月推出了代号为Sharptooth(利齿)的K6-3(1998年)系列微处理器,它是AMD 推出的最后一款支持Super架构和CPGA封装形式的CPU。K6-3采用了0.25微米制造工艺,集成256KB二级缓存(竞争对手英特尔的新赛扬是128KB),并以CPU 的主频速度运行。而曾经Socket 7主板上的L2此时就被K6-3自动识别为了L3,这对于高频率的CPU来说无疑很有优势,虽然K6-3的浮点运算依旧差强人意。因为各种原因,K6-3投放市场之后难觅踪迹,价格也并非平易近人,即便是更加先进的K6-3+出现之后。 AMD 于2001年10月推出了K8架构。尽管K8和K7采用了一样数目的浮点调度程序窗口(scheduling window ),但是整数单元从K7的18个扩充到了24个,此外,AMD 将K7中的分支预测单元做了改进。global history counter buffer(用于记录CPU 在某段时间内对数据的访问,称之为全历史计数缓冲器)比起Athlon来足足大了4倍,并在分支测错前流水线中可以容纳更多指令数,AMD 在整数调度程序上的改进让K8的管线深度比Athlon多出2级。增加两级线管深度的目的在于提升K8的核心频率。在K8中,AMD 增加了后备式转换缓冲,这是为了应对Opteron在服务器应用中的超大内存需求。 AMD于2007下半年推出K10架构。 采用K10架构的 Barcelona 为四核并有4.63亿晶体管。Barcelona是AMD 第一款四核处理器,原生架构基于65nm 工艺技术。和Intel Kentsfield 四核不同的是,Barcelona并不是将两个双核封装在一起,而是真正的单芯片四核心。 编辑本段性能指标主频主频也叫时钟频率,单位是兆赫(MHz)或千兆赫(GHz),用来表示CPU的运算、处理数据的速度。 CPU的主频=外频倍频系数。主频和实际的运算速度存在一定的关系,但并不是一个简单的线性关系。所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz至强(Xeon)/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线、总线等等各方面的性能指标。 外频外频是CPU的基准频率,单位是MHz。CPU的外频决定着整块主板的运行速度。通俗地说,在台式机中,所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。 目前的绝大部分电脑系统中外频与主板前端总线不是同步速度的,而外频与前端总线(FSB)频率又很容易被混为一谈。 前端总线(FSB)频率前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。 中央处理器(Intel)外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一亿次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz64bit8bit/Byte=800MB/s。 其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组Intel 7501.Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。 倍频系数倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高主频而得到高倍频的CPU就会出现明显的“瓶颈”效应CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,少量的如Intel 酷睿2核心的奔腾双核E6500K和一些至尊版的CPU不锁倍频,而AMD之前都没有锁,现在AMD推出了黑盒版CPU(即不锁倍频版本,用户可以自由调节倍频,调节倍频的超频方式比调节外频稳定得多)。 缓存缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。 L1Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32256KB。 L2Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,以前家庭用CPU容量最大的是512KB,现在笔记本电脑中也可以达到2M,而服务器和工作站上用CPU的L2高速缓存更高,可以达到8M以上。 L3Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。 其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。 但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政合同纠纷解决机制与行政争议化解策略
- 专业市场店面转让及品牌推广合同
- 城市绿化养护劳务分包合同生态平衡与景观提升协议
- 企业员工工伤事故赔偿与劳动保护相结合的合同
- 土地抵押个人借款合同抵押权实现及抵押物处置流程
- 混凝土工程劳务分包施工进度管理合同
- 农田农业科技研发与承包服务合同
- 出租车驾驶员承包车辆保险及理赔服务合同
- 股东间股权转让与知识产权保护合同
- 时尚饮品连锁店加盟合同范本及营销策略
- GB/T 21063.4-2007政务信息资源目录体系第4部分:政务信息资源分类
- 机修车间岗位廉洁风险点及防范措施表
- 全新版尹定邦设计学概论1课件
- 牙及牙槽外科
- 文物建筑保护修缮专项方案
- 万用表 钳形表 摇表的使用课件
- 63T折弯机使用说明书
- 170位真实有效投资人邮箱
- 工程力学ppt课件(完整版)
- 《区域经济学》讲义(1)课件
- 船模制作教程(课堂PPT)课件(PPT 85页)
评论
0/150
提交评论