


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Heat Pump Technology Heat flows naturally from a higher to a lower temperature. Heat pumps, however, are able to force the heat flow in the other direction, using a relatively small amount of high quality drive energy (electricity, fuel, or high-temperature waste heat). Thus heat pumps can transfer heat from natural heat sources in the surroundings, such as the air, ground or water, or from man-made heat sources such as industrial or domestic waste, to a building or an industrial application. Heat pumps can also be used for cooling. Heat is then transferred in the opposite direction, from the application that is cooled, to surroundings at a higher temperature. Sometimes the excess heat from cooling is used to meet a simultaneous heat demand. In order to transport heat from a heat source to a heat sink, external energy is needed to drive the heat pump. Theoretically, the total heat delivered by the heat pump is equal to the heat extracted from the heat source, plus the amount of drive energy supplied. Electrically-driven heat pumps for heating buildings typically supply 100 kWh of heat with just 20-40 kWh of electricity. Many industrial heat pumps can achieve even higher performance, and supply the same amount of heat with only 3-10 kWh of electricity. Because heat pumps consume less primary energy than conventional heating systems, they are an important technology for reducing gas emissions that harm the environment, such as carbon dioxide (CO2), sulphur dioxide (SO2) and nitrogen oxides (NOx). However, the overall environmental impact of electric heat pumps depends very much on how the electricity is produced. Heat pumps driven by electricity from, for instance, hydropower or renewable energy reduce emissions more significantly than if the electricity is generated by coal, oil or gas-fired power plants. The two main heat pump typesAlmost all heat pumps currently in operation are either based on a vapour compression, or on an absorption cycle. These two principles will be briefly discussed in the following two sections. Theoretically, heat pumping can be achieved by many more thermodynamic cycles and processes. These include Stirling and Vuilleumier cycles, single-phase cycles (e.g. with air, CO2 or noble gases), solid-vapour sorption systems, hybrid systems (notably combining the vapour compression and absorption cycle) and electromagnetic and acoustic processes. Some of these are entering the market or have reached technical maturity, and could become significant in the future. Vapour compressionThe great majority of heat pumps work on the principle of the vapour compression cycle. The main components in such a heat pump system are the compressor, the expansion valve and two heat exchangers referred to as evaporator and condenser. The components are connected to form a closed circuit, as shown in Figure 1. A volatile liquid, known as the working fluid or refrigerant, circulates through the four components.In the evaporator the temperature of the liquid working fluid is kept lower than the temperature of the heat source, causing heat to flow from the heat source to the liquid, and the working fluid evaporates. Vapour from the evaporator is compressed to a higher pressure and temperature. The hot vapour then enters the condenser, where it condenses and gives off useful heat. Finally, the high-pressure working fluid is expanded to the evaporator pressure and temperature in the expansion valve. The working fluid is returned to its original state and once again enters the evaporator. The compressor is usually driven by an electric motor and sometimes by a combustion engine. An electric motor drives the compressor (see Figure 1) with very low energy losses. The overall energy efficiency of the heat pump strongly depends on the efficiency by which the electricity is generated. This is discussed in the section on Heat pump performance. When the compressor is driven by a gas or diesel engine (see Figure 2), heat from the cooling water and exhaust gas is used in addition to the condenser heat. Industrial vapour compression type heat pumps often use the process fluid itself as working fluid in an open cycle. These heat pumps are generally referred to as mechanical vapour recompressors, or MVRs; refer to the section on Heat pumps in industry. Figure 1: Closed cycle, electric-motor-driven vapour compression heat pumpFigure 2: Closed cycle, engine-driven vapour compression heat pump.Figure 3: Absorption heat pumpAbsorptionAbsorption heat pumps are thermally driven, which means that heat rather than mechanical energy is supplied to drive the cycle. Absorption heat pumps for space conditioning are often gas-fired, while industrial installations are usually driven by high-pressure steam or waste heat.Absorption systems utilise the ability of liquids or salts to absorb the vapour of the working fluid. The most common working pairs for absorption systems are: water (working fluid) and lithium bromide (absorbent); and ammonia (working fluid) and water (absorbent). In absorption systems, compression of the working fluid is achieved thermally in a solution circuit which consists of an absorber, a solution pump, a generator and an expansion valve as shown in Figure 3. Low-pressure vapour from the evaporator is absorbed in the absorbent. This process generates heat. The solution is pumped to high pressure and then enters the generator, where the working fluid is boiled off with an external heat supply at a high
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西广投产业链服务集团有限公司招聘15人考前自测高频考点模拟试题及一套参考答案详解
- 2025年温州永嘉县卫生健康系统公开招聘医学类工作人员25人考前自测高频考点模拟试题及一套参考答案详解
- 2025湖北恩施州宣恩县园投人力资源服务有限公司招聘多家企业工作人员14人模拟试卷有完整答案详解
- 智能硬件制造过程中的信息化建设方案
- 公司铸造碳化钨制管工技能操作考核试卷及答案
- 公司盐斤收放保管工特殊工艺考核试卷及答案
- 户外变电站知识培训总结课件
- 公司水解酵母干燥工抗压考核试卷及答案
- 公司轻冶料浆配料工抗压考核试卷及答案
- 公司催化裂化工设备维护与保养考核试卷及答案
- (完整版)韦氏儿童智力测试试题
- 机械制图-点线面教学课件
- 练习使用显微镜 全国公开课一等奖
- 2023年高考地理(上海卷)-含答案
- 比重式精选机的使用与维护
- GB/T 39554.1-2020全国一体化政务服务平台政务服务事项基本目录及实施清单第1部分:编码要求
- GB/T 2942-2009硫化橡胶与纤维帘线静态粘合强度的测定H抽出法
- 电梯设计系统
- 细胞培养技术培训课件
- DB3301T 0286-2019 城市绿地养护管理质量标准
- 轴类零件工艺工序卡片
评论
0/150
提交评论