全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Heat Pump Technology Heat flows naturally from a higher to a lower temperature. Heat pumps, however, are able to force the heat flow in the other direction, using a relatively small amount of high quality drive energy (electricity, fuel, or high-temperature waste heat). Thus heat pumps can transfer heat from natural heat sources in the surroundings, such as the air, ground or water, or from man-made heat sources such as industrial or domestic waste, to a building or an industrial application. Heat pumps can also be used for cooling. Heat is then transferred in the opposite direction, from the application that is cooled, to surroundings at a higher temperature. Sometimes the excess heat from cooling is used to meet a simultaneous heat demand. In order to transport heat from a heat source to a heat sink, external energy is needed to drive the heat pump. Theoretically, the total heat delivered by the heat pump is equal to the heat extracted from the heat source, plus the amount of drive energy supplied. Electrically-driven heat pumps for heating buildings typically supply 100 kWh of heat with just 20-40 kWh of electricity. Many industrial heat pumps can achieve even higher performance, and supply the same amount of heat with only 3-10 kWh of electricity. Because heat pumps consume less primary energy than conventional heating systems, they are an important technology for reducing gas emissions that harm the environment, such as carbon dioxide (CO2), sulphur dioxide (SO2) and nitrogen oxides (NOx). However, the overall environmental impact of electric heat pumps depends very much on how the electricity is produced. Heat pumps driven by electricity from, for instance, hydropower or renewable energy reduce emissions more significantly than if the electricity is generated by coal, oil or gas-fired power plants. The two main heat pump typesAlmost all heat pumps currently in operation are either based on a vapour compression, or on an absorption cycle. These two principles will be briefly discussed in the following two sections. Theoretically, heat pumping can be achieved by many more thermodynamic cycles and processes. These include Stirling and Vuilleumier cycles, single-phase cycles (e.g. with air, CO2 or noble gases), solid-vapour sorption systems, hybrid systems (notably combining the vapour compression and absorption cycle) and electromagnetic and acoustic processes. Some of these are entering the market or have reached technical maturity, and could become significant in the future. Vapour compressionThe great majority of heat pumps work on the principle of the vapour compression cycle. The main components in such a heat pump system are the compressor, the expansion valve and two heat exchangers referred to as evaporator and condenser. The components are connected to form a closed circuit, as shown in Figure 1. A volatile liquid, known as the working fluid or refrigerant, circulates through the four components.In the evaporator the temperature of the liquid working fluid is kept lower than the temperature of the heat source, causing heat to flow from the heat source to the liquid, and the working fluid evaporates. Vapour from the evaporator is compressed to a higher pressure and temperature. The hot vapour then enters the condenser, where it condenses and gives off useful heat. Finally, the high-pressure working fluid is expanded to the evaporator pressure and temperature in the expansion valve. The working fluid is returned to its original state and once again enters the evaporator. The compressor is usually driven by an electric motor and sometimes by a combustion engine. An electric motor drives the compressor (see Figure 1) with very low energy losses. The overall energy efficiency of the heat pump strongly depends on the efficiency by which the electricity is generated. This is discussed in the section on Heat pump performance. When the compressor is driven by a gas or diesel engine (see Figure 2), heat from the cooling water and exhaust gas is used in addition to the condenser heat. Industrial vapour compression type heat pumps often use the process fluid itself as working fluid in an open cycle. These heat pumps are generally referred to as mechanical vapour recompressors, or MVRs; refer to the section on Heat pumps in industry. Figure 1: Closed cycle, electric-motor-driven vapour compression heat pumpFigure 2: Closed cycle, engine-driven vapour compression heat pump.Figure 3: Absorption heat pumpAbsorptionAbsorption heat pumps are thermally driven, which means that heat rather than mechanical energy is supplied to drive the cycle. Absorption heat pumps for space conditioning are often gas-fired, while industrial installations are usually driven by high-pressure steam or waste heat.Absorption systems utilise the ability of liquids or salts to absorb the vapour of the working fluid. The most common working pairs for absorption systems are: water (working fluid) and lithium bromide (absorbent); and ammonia (working fluid) and water (absorbent). In absorption systems, compression of the working fluid is achieved thermally in a solution circuit which consists of an absorber, a solution pump, a generator and an expansion valve as shown in Figure 3. Low-pressure vapour from the evaporator is absorbed in the absorbent. This process generates heat. The solution is pumped to high pressure and then enters the generator, where the working fluid is boiled off with an external heat supply at a high
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 母婴社群带货合作协议(达人版)
- 2025年滨州清鸿水务有限公司公开招聘工作人员笔试和人员笔试历年参考题库附带答案详解
- 地下智能监控与预警系统
- 塑料容器项目可行性分析报告范文
- 实木地板项目可行性分析报告范文
- 新课标人教版五年级上册数学等式的性质教学文案教案
- 小学语文S版四年级上册教案
- 广西地区中考英语复习专题十七完形填空试卷部分教案
- 幼儿园中班春天主题春来了教案
- 新人美版三年级下册美术教案
- 全国优质课一等奖初中语文八年级上册第14课《昆明的雨》课件
- 超高分子量聚乙烯复合材料UD布项目环境影响报告表
- 工程竣工验收告知单
- 项目合作协议-非框架协议版
- 橡胶的加工工艺课件
- DCC网销能力提升培训
- 神经病理性疼痛诊疗专家共识解读
- 广告制作常用材料专题培训课件
- 《我是运动小健将》课件
- 170位真实有效投资人邮箱
- 家禽屠宰建设项目可行性研究报告
评论
0/150
提交评论