变压器中英文翻译资料.doc_第1页
变压器中英文翻译资料.doc_第2页
变压器中英文翻译资料.doc_第3页
变压器中英文翻译资料.doc_第4页
变压器中英文翻译资料.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

变压器 1. 介绍 要从远端发电厂送出电能,必须应用高压输电。因为最终的负荷,在一些点高电压必须降低。变压器能使电力系统各个部分运行在电压不同的等级。本文我们讨论的原则和电力变压器的应用。 2. 双绕组变压器 变压器的最简单形式包括两个磁通相互耦合的固定线圈。两个线圈之所以相互耦合,是因为它们连接着共同的磁通。 在电力应用中,使用层式铁芯变压器(本文中提到的)。变压器是高效率的,因为它没有旋转损失,因此在电压等级转换的过程中,能量损失比较少。典型的效率范围在92到99%,上限值适用于大功率变压器。 从交流电源流入电流的一侧被称为变压器的一次侧绕组或者是原边。它在铁圈中建立了磁通,它的幅值和方向都会发生周期性的变化。磁通连接的第二个绕组被称为变压器的二次侧绕组或者是副边。磁通是变化的;因此依据楞次定律,电磁感应在二次侧产生了电压。变压器在原边接收电能的同时也在向副边所带的负荷输送电能。这就是变压器的作用。 3. 变压器的工作原理 当二次侧电路开路是,即使原边被施以正弦电压Vp,也是没有能量转移的。外加电压在一次侧绕组中产生一个小电流I。这个空载电流有两项功能:(1)在铁芯中产生电磁通,该磁通在零和 m之间做正弦变化,m是铁芯磁通的最大值;(2)它的一个分量说明了铁芯中的涡流和磁滞损耗。这两种相关的损耗被称为铁芯损耗。 变压器空载电流I一般大约只有满载电流的2%5%。因为在空载时,原边绕组中的铁芯相当于一个很大的电抗,空载电流的相位大约将滞后于原边电压相位90。显然可见电流分量Im= I0sin0,被称做励磁电流,它在相位上滞后于原边电压VP 90。就是这个分量在铁芯中建立了磁通;因此磁通与Im同相。 第二个分量Ie=I0sin0,与原边电压同相。这个电流分量向铁芯提供用于损耗的电流。两个相量的分量和代表空载电流,即 I0 = Im+ Ie 应注意的是空载电流是畸变和非正弦形的。这种情况是非线性铁芯材料造成的。 如果假定变压器中没有其他的电能损耗一次侧的感应电动势Ep和二次侧的感应电压Es可以表示出来。因为一次侧绕组中的磁通会通过二次绕组,依据法拉第电磁感应定律,二次侧绕组中将产生一个电动势E,即E=N/t。相同的磁通会通过原边自身,产生一个电动势Ep。正如前文中讨论到的,所产生的电压必定滞后于磁通90,因此,它于施加的电压有180的相位差。因为没有电流流过二次侧绕组,Es=Vs。一次侧空载电流很小,仅为满载电流的百分之几。因此原边电压很小,并且Vp的值近乎等于Ep。原边的电压和它产生的磁通波形是正弦形的;因此产生电动势Ep和Es的值是做正弦变化的。产生电压的平均值如下 Eavg = turns 即是法拉第定律在瞬时时间里的应用。它遵循 Eavg = N = 4fNm 其中N是指线圈的匝数。从交流电原理可知,有效值是一个正弦波,其值为平均电压的1.11倍;因此 E = 4.44fNm 因为一次侧绕组和二次侧绕组的磁通相等,所以绕组中每匝的电压也相同。因此 Ep = 4.44fNpm 并且 Es = 4.44fNsm 其中Np和Es是一次侧绕组和二次侧绕组的匝数。一次侧和二次侧电压增长的比率称做变比。用字母a来表示这个比率,如下式 a = = 假设变压器输出电能等于其输入电能这个假设适用于高效率的变压器。实际上我们是考虑一台理想状态下的变压器;这意味着它没有任何损耗。因此 Pm = Pout 或者 VpIp primary PF = VsIs secondary PF 这里PF代表功率因素。在上面公式中一次侧和二次侧的功率因素是相等的;因此 VpIp = VsIs 从上式我们可以得知 = a 它表明端电压比等于匝数比,换句话说,一次侧和二次侧电流比与匝数比成反比。匝数比可以衡量二次侧电压相对于一次恻电压是升高或者是降低。为了计算电压,我们需要更多数据。 终端电压的比率变化有些根据负载和它的功率因素。实际上, 变比从标识牌数据获得, 列出在满载情况下原边和副边电压。 当副边电压Vs相对于原边电压减小时,这个变压器就叫做降压变压器。如果这个电压是升高的,它就是一个升压变压器。在一个降压变压器中传输变比a远大于1(a1.0),同样的,一个升压变压器的变比小于1(a1.0), while for a step-up transformer it is smaller than unity (a1.0). In the event that a=1, the transformer secondary voltage equals the primary voltage. This is a special type of transformer used in instances where electrical isolation is required between the primary and secondary circuit while maintaining the same voltage level. Therefore, this transformer is generally knows as an isolation transformer. As is apparent, it is the magnetic flux in the core that forms the connecting link between primary and secondary circuit. In section 4 it is shown how the primary winding current adjusts itself to the secondary load current when the transformer supplies a load. Looking into the transformer terminals from the source, an impedance is seen which by definition equals Vp / Ip. From = a , we have Vp = aVs and Ip = Is/a.In terms of Vs and Is the ratio of Vp to Ip is = = But Vs / Is is the load impedance ZL thus we can say that Zm (primary) = a2ZL This equation tells us that when an impedance is connected to the secondary side, it appears from the source as an impedance having a magnitude that is a2 times its actual value. We say that the load impedance is reflected or referred to the primary. It is this property of transformers that is used in impedance-matching applications. 4. TRANSFORMERS UNDER LOAD The primary and secondary voltages shown have similar polarities, as indicated by the “dot-making” convention. The dots near the upper ends of the windings have the same meaning as in circuit theory; the marked terminals have the same polarity. Thus when a load is connected to the secondary, the instantaneous load current is in the direction shown. In other words, the polarity markings signify that when positive current enters both windings at the marked terminals, the MMFs of the two windings add. Since the secondary voltage depends on the core flux 0, it must be clear that the flux should not change appreciably if Es is to remain essentially constant under normal loading conditions. With the load connected, a current Is will flow in the secondary circuit, because the induced EMF Es will act as a voltage source. The secondary current produces an MMF NsIs that creates a flux. This flux has such a direction that at any instant in time it opposes the main flux that created it in the first place. Of course, this is Lenzs law in action. Thus the MMF represented by NsIs tends to reduce the core flux 0. This means that the flux linking the primary winding reduces and consequently the primary induced voltage Ep, This reduction in induced voltage causes a greater difference between the impressed voltage and the counter induced EMF, thereby allowing more current to flow in the primary. The fact that primary current Ip increases means that the two conditions stated earlier are fulfilled: (1) the power input increases to match the power output, and (2) the primary MMF increases to offset the tendency of the secondary MMF to reduce the flux. In general, it will be found that the transformer reacts almost instantaneously to keep the resultant core flux essentially constant. Moreover, the core flux 0 drops very slightly between n o load and full load (about 1 to 3%), a necessary condition if Ep is to fall sufficiently to allow an increase in Ip. On the primary side, Ip is the current that flows in the primary to balance the demagnetizing effect of Is. Its MMF NpIp sets up a flux linking the primary only. Since the core flux 0 remains constant. I0 must be the same current that energizes the transformer at no load. The primary current Ip is therefore the sum of the current Ip and I0. Because the no-load current is relatively small, it is correct to assume that the primary ampere-turns equal the secondary ampere-turns, since it is under this condition that the core flux is essentially constant. Thus we will assume that I0 is negligible, as it is only a small component of the full-load current. When a current flows in the secondary winding, the resulting MMF (NsIs) creates a separate flux, apart from the flux 0 produced by I0, which links the secondary winding only. This flux does no link with the primary winding and is therefore not a mutual flux. In addition, the load current that flows through the primary winding creates a flux that links with the primary winding only; it is called the primary leakage flux. The secondary- leakage flux gives rise to an induced voltage that is not counter balanced by an equivalent induced voltage in the primary. Similarly, the voltage induced in the primary is not counterbalanced in the secondary winding. Consequently, these two induced voltages behave like voltage drops, generally called leakage reactan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论