托克托县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
托克托县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
托克托县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
托克托县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
托克托县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

托克托县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 三个数a=0.52,b=log20.5,c=20.5之间的大小关系是( )AbacBacbCabcDbca2 若实数x,y满足,则(x3)2+y2的最小值是( )AB8C20D23 已知等差数列an中,a6+a8=16,a4=1,则a10的值是( )A15B30C31D644 已知两条直线,其中为实数,当这两条直线的夹角在内变动时,的取值范围是( )A B C D5 已知函数,若,则( )A1B2C3D-16 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )ABCD7 若集合A1,1,B0,2,则集合z|zxy,xA,yB中的元素的个数为()A5B4C3D28 计算log25log53log32的值为( )A1B2C4D89 不等式x22x+30的解集为( )Ax|x3或x1Bx|1x3Cx|3x1Dx|x3或x110已知xR,命题“若x20,则x0”的逆命题、否命题和逆否命题中,正确命题的个数是( )A0B1C2D311如果函数f(x)的图象关于原点对称,在区间上是减函数,且最小值为3,那么f(x)在区间上是( )A增函数且最小值为3B增函数且最大值为3C减函数且最小值为3D减函数且最大值为3 12与椭圆有公共焦点,且离心率的双曲线方程为( )ABCD二、填空题13用描述法表示图中阴影部分的点(含边界)的坐标的集合为14阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是15已知过球面上 三点的截面和球心的距离是球半径的一半,且,则球表面积是_.16设m是实数,若xR时,不等式|xm|x1|1恒成立,则m的取值范围是17已知函数f(x)的定义域为1,5,部分对应值如下表,f(x)的导函数y=f(x)的图象如图示 x1045f(x)1221下列关于f(x)的命题:函数f(x)的极大值点为0,4;函数f(x)在0,2上是减函数;如果当x1,t时,f(x)的最大值是2,那么t的最大值为4;当1a2时,函数y=f(x)a有4个零点;函数y=f(x)a的零点个数可能为0、1、2、3、4个其中正确命题的序号是18已知实数x,y满足约束条,则z=的最小值为三、解答题19(本小题满分12分)设函数.(1)当时,求不等式的解集;(2)当时,恒成立,求实数的取值范围20(本小题满分12分)已知椭圆的离心率为,、分别为左、右顶点, 为其右焦点,是椭圆上异于、的动点,且的最小值为-2.(1)求椭圆的标准方程;(2)若过左焦点的直线交椭圆于两点,求的取值范围.21(本题12分)已知数列的首项,通项(,为常数),且成等差数列,求:(1)的值;(2)数列前项和的公式.22设函数f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=f(x),当x0,2时,f(x)=2xx2(1)求证:f(x)是周期函数;(2)当x2,4时,求f(x)的解析式;(3)求f(0)+f(1)+f(2)+f(2015)的值23设函数f(x)=lnxax2bx(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2x3)其图象上任意一点P(x0,y0)处切线的斜率k恒成立,求实数a的取值范围;(3)当a=0,b=1时,方程f(x)=mx在区间1,e2内有唯一实数解,求实数m的取值范围 24已知等差数列an的前n项和为Sn,公差d0,S2=4,且a2,a5,a14成等比数列()求数列an的通项公式;()从数列an中依次取出第2项,第4项,第8项,第2n项,按原来顺序组成一个新数列bn,记该数列的前n项和为Tn,求Tn的表达式托克托县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:a=0.52=0.25,b=log20.5log21=0,c=20.520=1,bac故选:A【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用2 【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离dmin=,(x3)2+y2的最小值是:故选:A【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题3 【答案】A【解析】解:等差数列an,a6+a8=a4+a10,即16=1+a10,a10=15,故选:A4 【答案】C【解析】1111试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以直线的倾斜角的取值范围是且,所以直线的斜率为且,即或,故选C.考点:直线的倾斜角与斜率.5 【答案】A【解析】g(1)=a1,若fg(1)=1,则f(a1)=1,即5|a1|=1,则|a1|=0,解得a=16 【答案】C 【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项故选:C【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义7 【答案】C【解析】由已知,得z|zxy,xA,yB1,1,3,所以集合z|zxy,xA,yB中的元素的个数为3.8 【答案】A【解析】解:log25log53log32=1故选:A【点评】本题考查对数的运算法则的应用,考查计算能力9 【答案】D【解析】解:不等式x22x+30,变形为:x2+2x30,因式分解得:(x1)(x+3)0,可化为:或,解得:x3或x1,则原不等式的解集为x|x3或x1故选D10【答案】C【解析】解:命题“若x20,则x0”的逆命题是“若x0,则x20”,是真命题;否命题是“若x20,则x0”,是真命题;逆否命题是“若x0,则x20”,是假命题;综上,以上3个命题中真命题的个数是2故选:C11【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础12【答案】 A【解析】解:由于椭圆的标准方程为:则c2=132122=25则c=5又双曲线的离心率a=4,b=3又因为且椭圆的焦点在x轴上,双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m0,n0,mn),双曲线方程可设为mx2ny2=1(m0,n0,mn),由题目所给条件求出m,n即可二、填空题13【答案】(x,y)|xy0,且1x2,y1 【解析】解:图中的阴影部分的点设为(x,y)则x,y)|1x0,y0或0x2,0y1=(x,y)|xy0且1x2,y1故答案为:(x,y)|xy0,且1x2,y114【答案】3 【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值当x=2时,f(x)=122=3故答案为:3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视15【答案】【解析】111考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.16【答案】0,2 【解析】解:|xm|x1|(xm)(x1)|=|m1|,故由不等式|xm|x1|1恒成立,可得|m1|1,1m11,求得0m2,故答案为:0,2【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题17【答案】 【解析】解:由导数图象可知,当1x0或2x4时,f(x)0,函数单调递增,当0x2或4x5,f(x)0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以正确;正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x1,t函数f(x)的最大值是4,当2t5,所以t的最大值为5,所以不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)a有几个零点,所以不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)1或1f(2)2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以正确,综上正确的命题序号为故答案为:【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键18【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=32x+y,设t=2x+y,则y=2x+t,平移直线y=2x+t,由图象可知当直线y=2x+t经过点B时,直线y=2x+t的截距最小,此时t最小由,解得,即B(3,3),代入t=2x+y得t=2(3)+3=3t最小为3,z有最小值为z=33=故答案为:【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法三、解答题19【答案】(1);(2)【解析】试题分析:(1)由于原不等式的解集为;(2)由设,原命题转化为又且考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为,解得;第二小题利用数学结合思想和转化思想,将原命题转化为 ,进而求得:20【答案】(1);(2).【解析】试题解析:(1)根据题意知,即,则,设,当时,则.椭圆的方程为.1111设,则,.,.综上知,.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.21【答案】(1);(2).考点:等差,等比数列通项公式,数列求和.22【答案】 【解析】(1)证明:f(x+2)=f(x),f(x+4)=f(x+2)+2=f(x+2)=f(x),y=f(x)是周期函数,且T=4是其一个周期(2)令x2,0,则x0,2,f(x)=2xx2,又f(x)=f(x),在x2,0,f(x)=2x+x2,x2,4,那么x42,0,那么f(x4)=2(x4)+(x4)2=x26x+8,由于f(x)的周期是4,所以f(x)=f(x4)=x26x+8,当x2,4时,f(x)=x26x+8(3)当x0,2时,f(x)=2xx2f(0)=0,f(1)=1,当x2,4时,f(x)=x26x+8,f(2)=0,f(3)=1,f(4)=0f(1)+f(2)+f(3)+f(4)=1+01+0=0,y=f(x)是周期函数,且T=4是其一个周期2016=4504f(0)+f(1)+f(2)+f(2015)=504f(0)+f(1)+f(2)+f(3)=5040=0,即求f(0)+f(1)+f(2)+f(2015)=0【点评】本题主要考查函数周期性的判断,函数奇偶性的应用,综合考查函数性质的应用23【答案】 【解析】解:(1)依题意,知f(x)的定义域为(0,+)当a=2,b=1时,f(x)=lnxx2x,f(x)=2x1=令f(x)=0,解得x=当0x时,f(x)0,此时f(x)单调递增;当x时,f(x)0,此时f(x)单调递减所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+)(2)F(x)=lnx+,x2,3,所以k=F(x0)=,在x02,3上恒成立,所以a(x02+x0)max,x02,3当x0=2时,x02+x0取得最大值0所以a0(3)当a=0,b=1时,f(x)=lnx+x,因为方程f(x)=mx在区间1,e2内有唯一实数解,所以lnx+x=mx有唯一实数解m=1+,设g(x)=1+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论