大学物理第13章.pdf_第1页
大学物理第13章.pdf_第2页
大学物理第13章.pdf_第3页
大学物理第13章.pdf_第4页
大学物理第13章.pdf_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第 13 章章 振动振动 13-1 如图 13-23 所示,质量为m的密度计,放在密度为的液体中。 已知密度计圆管的直径为d。试证明:推动密度计后,证明它在竖直方 向的振动为简谐振动,并计算其振动周期。 解:平衡位置: 当 F浮=G 时,平衡点为 C 处。设此时进入水中的深度 为 a:mggSa 可知浸入水中为 a 处为平衡位置。 以水面作为坐标原点 O,以向上为 x 轴,质心的位置为 x,则:分析受力:不管它处在什么 位置,其浸没水中的部分都可以用 a-x 来表示,所以力 ()Fg ax SgaSgSxkx 2 2 dt xd m gSx m F a 令 m dg m gS 4 2 2 可得到: 0 2 2 2 x dt xd 可见它是一个简谐振动。 周期为: g m d T 4 /2 13-2 证明图 13-24 所示系统的振动为简谐振动。 其频率为: mkk kk )(2 1 21 21 证明:两根弹簧的串联之后等效于一根弹簧,所以仍为简谐振动(证明略) ,其劲度系数满 足:KxxKxK 2211 和xxx 21 可得: 21 111 KKK 所以: 21 21 KK KK K 代入频率计算式,可得: mkk kk m k )(2 1 2 1 21 21 13-3 如图 13-25 所示,有一截面积为 S 的空心管柱,配有 质量为 m 的活塞, 活塞与管柱间的摩擦略去不计。 在活塞处 于平衡状态时,柱内气体的压强为 p,气柱高为 h。若使活 塞有一微小位移,活塞将上下振动,证明它在竖直方向的振 动为简谐振动,并计算其振动频率。设气体温度不变。 图 13-24 习题 13-2 图 图 13-25 习题 13-3 图 解:在静平衡时:pSmgSp 0 当活塞下降 x (任意位置)时: 2 2 10 dt xd mmgSpSp 由上两式得到: 2 2 1 dt xd mSppS 过程是等温的 11V ppV 即:SxhpphS)( 1 得出:p h x h x p xh ph p)1 ( 1 1 1 )(hx 所以 2 2 )1 ( dt xd mpS h x pS 或 0 2 2 x hm pS dt xd 说明活塞的上下振动为简谐振动,其振动频率 hm mgSp hm pS 0 134 设地球是一个半径为 R 的均匀球体,密度 5.5 103 kgm 3。现假定沿直径凿 一条隧道。若有一质量为 m 的质点在此隧道内做无摩擦运动。 (1)证明此质点的运动是简 谐振动; (2)计算其周期。 解: (l)取图所示坐标。当质量为 m 的质点位于 x 处时,它受地球的引力为 2 x x mm GF 式中 G 为引力常量,mx是以 x 为半径的球体质量,即3/4 3 x xm。令 3/4Gmk,则质点受力 kxGmxF3/4 因此,质点作简谐运动。 (2)质点振动的周期为 s1007. 5 /3/2 3 GkmT 13-5 两质点作同方向、同频率的简谐振动,振幅相等。当质点 1 在 x1 = A/2 处,且向左运 动时,另一个质点 2 在 x2 = -A/2 处,且向右运动。求这两个质点的相位差。 解:由旋转矢量图可知: 当质点 1 在 2/ 1 Ax 处,且向左运动时, 相位为/3, 而质点 2 在 2/ 2 Ax 处,且向右运动, 相位为 4/3 。 所以它们的相位差为。 13-6 一竖直悬挂的弹簧下端挂一物体,最初用手将物体在弹簧原长处托住,然后放手,此 系统便上下振动起来,已知物体最低位置是初始位置下方cm0 .10处,求: (1)振动频率; (2)物体在初始位置下方cm0 . 8处的速度大小。 解: (1)由题知 2A=10cm,所以 A=5cm; 196 105 8.9 2 x g m K 又=14196 m k ,即 7 2 1 m k (2)物体在初始位置下方cm0 . 8处,对应着是 x=3cm 的位置,所以: 0 3 cos 5 x A 那么此时的 0 4 sin 5 v A 那么速度的大小为 4 0.56 5 vA 137 一物体沿 x 轴做简谐运动, 振幅为 0.06m, 周期为 2.0s, 当 t = 0 时位移为 0.03m, 且向 x 轴正方向运动。求: (1)t = 0.5s 时,物体的位移、速度和加速度; (2)物体从 x = 0.03m 处向 x 轴负向运动开始,到平衡位置,至少需要多少时间? 解解: (1)由题意知 A = 0.06m、 1 s/2 T 由旋转矢量图可确定初相则 3 0 , 振动方程为 ) 3 cos(06.0 tx 当 t = 0.5s 时质点的位移、速度、加速度分别为 mx052. 0) 32 cos(06. 0 m/s 094. 0) 32 sin(06. 0 dt dx v 22 2 2 / 513. 0) 32 cos(06. 0sm dt xd a (2)质点从 x = 0.03 m 运动到平衡位置的过程中,旋转矢量从图中的位置 M 转至位置 N, 矢量转过的角度(即相位差) 6/5 。该过程所需时间为 s833. 0 t 13-8 一物体放在水平木板上,此板沿水平方向作简谐振动,频率为 2Hz,物体与板面间的 静摩擦系数为 0.50。问: (1)要使物体在板上不致滑动,振幅的最大值为多少? (2)若令此 板改作竖直方向的简谐振动, 振幅为 0.05m, 要使物体一直保持与板接触的最大频率是多少? 解:(1)为使物体和板不发生相对滑动,由最大静摩擦力带动物体和板一起振动,所以有: mm Ammamg 2 所以 m g Am031. 0 )22( 8 . 95 . 0 22 (2)物体作垂直振动时有: maNmg 为使物体不脱离板必须满足 0N,在极限情况时有:N=0 Ammamg mm 2 因而 A g m 或 2 . 2 100 . 5 8 . 9 2 1 2 1 2 A g HZ 139 如本题图所示,一劲度系数为 k 的轻弹簧,其下挂有一质量为 m1的空盘.现有一 质量为 m2的物体从盘上方高为h处自由落到盘中,并和盘粘在一起振动.问: (1)此时的振动周期与空盘作振动的周期有何不同? (2)此时的振幅为多大? 分析分析:原有空盘振动系统由于下落物体的加入,振子质量由 m1变为 m1 +m2,因此新系统的 角频率(或周期)要改变。 由于 2 0 2 0 )(vxA因此,确定初始速度 0 v 和初始位移0 x 是求解振幅 A 的关键。 物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘 与物体的共同初速度0 v ,这也是该振动系统的初始速度。 在确定初始时刻的位移0 x 时, 应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置。 因此,本题中初始 位移0 x ,也就是空盘时的平衡位置相对新系统的平衡位置的位移。 解解: (l)空盘时和物体落入盘中后的振动周期分别为 kmmT kmT )(22 22 21 1 习题 139 图 可见 TT ,即振动周期变大了。 (2)如图所示,取新系统的平衡位置为坐标原点 O。 则根据分析中 所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置 的位移,即 k gm g k mm k gm llx 2211 210 式中kgml 11 为空盘静止时弹簧的伸长量,kgmml)( 212 为物体粘在盘上 后,静止时弹簧的伸长量。 由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后 的速度 gh mm m v mm m v2 21 2 21 2 0 式中 ghv2 是物体由 h 高下落至盘时的速度。故系统振动的振幅为 gmm kh k gm vxA )( 2 1)( 21 2 0 2 0 2 本题也可用机械能守恒定律求振幅 A。 13-10 如图 13-27 所示,轻质弹簧的一端固定,另一端系一 轻绳,轻绳绕过滑轮连接一质量为 m 的物体,绳在轮上不打 滑,使物体上下自由振动。已知弹簧的劲度系数为 k,滑轮半 径为 R 转动惯量为 J。 (1)证明物体作简谐振动; (2)求物 体的振动周期; (3)设 t = 0 时,弹簧无伸缩,物体也无初速, 写出物体的振动表式。 解: (1)在静平衡时有: mgkbTT 21 取平衡位置为坐标原点, 在任意位置x时有: R dt xd JRTRT xbkT 2 2 12 1 )( 求出 0 / 22 2 RJm kx dt xd 物体的振动是简谐振动。 (2)振动的圆频率为 2 / RJm k 图 13-27 习题 13-10 图 周期 k RJm T 2 / 2 2 (3)由初始条件:0t时, k mg bx 0 ,0 0 v,得: k mg A , 振动方程为: ) / cos( 2 t RJm k k mg x 1311 若在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长 l 0 = 1.2cm 而平衡,经推动 后,该小球在竖直方向作振幅为 A = 2cm 的振动,试证明此振动为谐振动;若选小球在正最 大位移处开始计时,写出此振动的数值表达式。 解:设小球的质量为 m,由弹簧的倔强系数 k = m g / l 0 选平衡位置为原点,向下为正方向,小球在 x 处,根据牛顿定律得 m g k ( l 0 + x ) = m d2 x / d t2 将倔强系数 k = m g / l 0代入整理后得 d 2 x / d t 2 + g x / l 0 = 0 此振动为谐振动 令 g l /. 0 910 解得 x = A c o s (t + ) A = 210 -2 由题意: t = 0 时,x 0 = A,v0 = 0, = 0 x = 210 -2 c o s (9.1t ) (SI) 1312 一台摆钟的等效摆长 l=0.995m,摆锤可上、下移动以调节其周期,该钟每天快 1 分 27 秒,假如将此摆当作质量集中在摆锤中心的一个单摆来考虑,则应将摆锤向下移动 多少距离,才能使钟走得准确? 解解:钟摆周期的相对误差T / T = 钟的相对误差t / t ,等效单摆的周期 Tl g 2/ 设重力加速度 g 不变,则有 2 d T / T = d l / l 令 T = d T,t = d l, 并考虑到 T / T = t / t, 则摆锤向下移动的距离 l = 2 lt / t = 2.00 mm 摆锤应向下移 2.00mm,才能使钟走得准确。 1313 一质点作简谐振动,其振动方程为:x = 6.0 10-2 cos (t / 3 / 4) (SI) (1) 当 x 值为多大时,系统的势能为总能量的一半?(2)质点从平衡位置移动到此 位置所需最短时间为多少? 解: (1)势能 Wp= k x 2 / 2 ,总能 E = k A2 / 2 由题意 k x 2 / 2 = k A2 / 4,x = 4.2410-2 m (2) 周期 T = 2/ = 6 s 从平衡位置运动到xA /2的最短时间为 T / 8 6 / 8 = 0.75 s 1314 试证明: (1)在一个周期中,简谐运动的动能和势能对时间的平均值都等于 kA2/4; (2)在一个周期中,简谐运动的动能和势能对位置的平均值分别等于 kA2/3 和 kA2/6。 证证: (1)简谐运动的动能和势能分别为 )(sin 2 1 22 k tkAE )(cos 2 1 22 p tkAE 则在一个周期中,动能与势能对时间的平均值分别为 4/d )(sin 2 11 2 0 22 k kAttkA T E T 4/d )(cos 2 11 2 0 22 p kAttkA T E T (2)因简谐运动势能2/ 2 p kxE ,则势能在一个周期中对位置的平均值为 22 p 6 1 d 2 1 2 1 kAxkx A E A A 则动能在一个周期中对位置的平均值为 322 3 1 6 1 2 1 kAkAkAEEE PK 1315 一物体同时参与两个同方向的简谐振动:x1= 0.04 cos (2t +/2) (SI);x2 = 0.03 cos (2t +) (SI)。求此物体的振动方程。 解:设合成运动(简谐振动)的振动方程为: x = A c o s (t +) (1) 则 A 2 = A 12 +A 22 +2 A 1A 2 cos(2 - 1),2 1 = 1 / 2 代入(1)式,得 534 22 cmA 又 )3/4(= )2( coscos sinsin = 2211 2211 arctg AA AA arctg 2 . 2 127 rad (SI) )2 . 22cos(05. 0 tx 1316 有两个同方向同频率的简谐运动,其合振动的振幅为 0.20m,合振动的相位与 第一个振动的相位差为 /6,第一个振动的振幅为 0.173m。求第二个振动的振幅及两振动的 相位差。 解解:采用旋转矢量合成图求解。如图所示,取第一个振动的旋转矢量 A1沿 Ox 轴,即令 其初相为零;按题意,合振动的旋转矢量 A 与 A1之间的夹角 6/ 。根据矢量合成,可 得第二个振动的旋转矢量的大小(即振幅)为 m01. 0cos2 1 2 2 12 AAAAA 由于 A1、A2、A 的量值恰好满足勾股定理,故 A1与 A2 垂直,即第二个振动与第一个振动的相位差为 2 1317 求 5 个同方向、同频率简谐振动的合成,合振动方 程: 4 0 ) 4 cos( k k tax。 解:采用矢量合成法,如图所示,有 ) 2 cos(2 tax 13-18 两个同方向的简谐振动曲线如图 13-28 所示, (1)求合振动的振幅。 (2)求合振动的振动表达式。 解:通过旋转矢量图做最为简单。 先分析两个振动的状态: ,: 2 11 A,: 2 22 A 两者处于反相状态, (反相 ) 12( 12 k,, ,k210) 所以合成结果:振幅 12 AAA 振动相位判断:当 121 ,AA;当 221 ,AA; 所以本题中, 2 2 振动方程: )()( 2 2 cos 12 t T AAx 1319 示波管的电子束受到两个互相垂直的电场的作用。电子在两个方向上的位移分 别为tAxcos和)cos(tAy。求在0、 30和 90各种情况下,电 子在荧光屏上的轨迹方程。 解解:这是两个振动方向互相垂直的同频率简谐运动的合成问题。 合振动的轨迹方程为 2 21 2 2 2 2 1 2 sin/cos2/AAxyAyAx A1 A2 A3 A4 A5 A 图 13-28 习题 13-18 图 式中 A1、 A2为两振动的振幅, 为两个振

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论