




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
摘要通过对机械设计、制造及其自动化专业课程的学习,总结电大三年所学的知识,对工业机械手各部分机械结构和功能的论述和分析,以及实际操作中的应用情况,设计了一种圆柱坐标形式的数控机床上下料机械手。重点针对机械手的手爪、手腕、手臂、腰座等各部分机械结构以及机械手控制系统(传动系统、驱动系统)进行了详细的设计。同时对其控制系统和液压系统进行了理论分析和设计计算。基于PLC对机械手的控制系统进行了深入细致的设计,通过对机械手作业的工艺过程和控制要求的分析,设计了控制系统的硬件电路,同时编制了机械手的控制程序。设计达到了预期目标。 关键词:机械手;PLC;液压伺服定位;电液系统目录第一章 绪论.41.1 选题背景.41.2 设计目的.41.3 发展现状和趋势.4第二章 机械手各部分的设计.42.1机械手的总体设计.52.1.1 机械手总体结构的类型.52.1.2 具体采用方案.52.2 机械手腰坐结构的设计.62.2.1 腰坐结构的设计要求.6.2.2.2 具体设计方案.62.3 机械手臂的结构设计.72.3.1 机械手臂的设计要求.72.3.2 设计具体采用方案.72.4 机械手腕部的结构设计.8 2.4.1 机器人手腕结构的设计要求.82.4.2 设计具体采用方案.8.2.5 机械手手爪的结构设计.82.5.1 机械手手爪的结构设计要求. 82.5.2 驱动方式.92.5.3 典型结构.92.5.4具体设计方案.92.6 机械手的机械传动机构的设计102.6.1 工业机器人传动机构设计应注意的问题.102.6.2 工业机器人常用的传动机构形式.102.6.3 具体设计方案.112.7机械手驱动系统设计.112.7.1常用驱动系统及其特点.112.7.2 具体设计方案.112.8机器人手臂的平衡机构设计.112.8.1机器人平衡机构的形式.122.8.2设计具体采用方案.12第三章 理论分析和设计计算.123.1 液压传动系统设计计算123.1.1 确定液压系统基本方案.123.1.2 拟定液压执行元件运动控制回路.133.1.3 液压源系统的设计.133.1.4 绘制液压系统图.133.1.5 确定液压系统的主要参数.143.1.6 计算和选择液压元件.173.2 电机选型有关参数计算.173.2.1 有关参数的计算.173.2.2 电机型号的选择.19第4章 机械手控制系统的设计.204.1 硬件设计.204.1.1 机械手工艺过程与控制要求.204.1.2 机械手的作业流程.204.1.3机械手操作面板布置.214.1.4 控制器的选型.224.1.5 控制系统原理分析.224.1.6 PLC外部接线设计.234.1.7 I/O地址分配.234.2机械手控制系统软件设计.244.2.1 机械手控制主程序流程图.244.2.2 机械手控制程序设计.25结论.25参考文献.25附录.26致谢.27第一章 绪论1.1 选题背景机械手是在自动化生产过程中使用的一种具有抓取和移动刚健功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手能代替人类完成危险、重复枯燥的工作,减轻人类的劳动强度,提高劳动生产力。机械手越来越广泛的得到了应用,在机械行业中它可用于零部件组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更普遍。目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中的一个重要组成部分。把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,它适用于中、小批量生产,可以节省庞大的工件输送装置,结构紧凑,而且适应性更强。当工件变更时,柔性生产系统很容易改变,有利于企业不断更新适销对路的品种,提高产品质量,更好的适应市场竞争的需要。而目前我国的工业机器人技术及已工程应用的水平和国外比还有一定距离,应用规模和生产化水平低,机械手的研究和开发直接影响到我国自动化生产水平的提高,从经济上、技术上考虑是十分必要的。因此,界携手的研究设计是非常有意义的。1.2 设计目的目前,我国大多数工厂的生产线上数控机床装卸工件仍由人工完成,其劳动强度大、生产效率低,而且具有一定的危险性,已经满足不了生产自动化的发展趋势。为了提高工作效率,降低成本,并使生产线发展成为柔性制造系统,适应现代机械行业自动化生产的要求,针对具体生产工艺,结合机床的实际结构,利用机械手技术,设计用一台上下料机械手代替人工工作,以提高劳动生产率。本机械手主要与数控机床组合最终形成生产线,实现加工过程的自动化和无人化。1.3 发展现状和趋势 目前,国内外各种机械手和机械手的研究成为科研的热点,其研究的现状和大体趋势如下:1.机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机。2.工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,采用模块化结构;大大提高了系统的可靠性、易操作性和维修性。3.机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术进行决策控制;传感器融合配置技术成为智能化机器人的关键技术。4.关节式、侧喷式、顶喷式、龙门式喷涂机器人产品标准化、通用化、模块化、系列化设计;柔性仿形喷涂机器人开发,柔性仿形复合机构开发,仿形伺服轴轨迹规划研究,控制系统开发;5.焊接、搬运、装配、切割等作业的工业机械手产品的标准化、通用化、模块化、系列化研究;以及离线示教编程和系统动态仿真。. 总的来说,大体是两个方向:其一是机械手的智能化,多传感器、多控制器,先进的控制算法,复杂的机电控制系统;其二是与生产加工相联系,性价比高,在满足工作要求的基础上,追求系统的经济、简洁、可靠,大量采用工业控制器,市场化、模块化的元件。第二章 机械手各部件的设计2.1 机械手的总体设计2.1.1 机械手手总体结构的类型工业机械手的结构形式主要有四种:直角坐标结构,圆柱坐标结构,球坐标结构和关节型结构。各结构形式及其相应的特点,分别介绍如下:1. 直角坐标机械手结构特点直角坐标机械手的空间运动是用三个相互垂直的直线运动来实现的,如图2-1.a。由于直线运动易于实现全闭环的位置控制,因此,其运动位置精度高,但此种类型机械手的运动空间相对较小,如要达到较大运动空间,则要求机械手的尺寸足够大。直角坐标机械手的工作空间为一空间长方体,主要用于装配作业及搬运作业。直角坐标机械手有悬臂式,龙门式,天车式三种结构。2. 圆柱坐标机械手结构特点圆柱坐标机械手的空间运动是用一个回转运动及两个直线运动来实现的,如图2-1.b。其工作空间是一个圆柱状的空间。这种机械手构造比较简单,精度相对较高,常用于搬运作业。 3. 球坐标机械手结构特点球坐标机械手的空间运动是由两个回转运动和一个直线运动来实现的,如图2-1.c。其工作空间是一个类球形的空间。这种机械手结构简单、成本较低,但精度不很高,主要应用于搬运作业。4. 关节型机械手结构特点关节型机械手的空间运动是由三个回转运动实现的,如图2-1.d。相对机械手本体尺寸,其工作空间比较大,动作灵活,结构紧凑,占地面积小。此种机械手在工业中应用十分广泛,如焊接、喷漆、搬运、装配等作业。关节型机械手又分为水平关节型和垂直关节型两种。2.1.2 具体采用方案 具体到本设计,因为考虑到数控机床布局的具体形式及对机械手的具体要求,考虑在满足系统工艺要求的前提下,尽量简化结构,一件小成本、提高可靠度。该机械手的工作中需要3种运动,其中手臂的伸缩和立柱升降为两个直线运动,另一个为手臂的回转运动,综合考虑,机械手自由度数目取为3,坐标形式选择圆柱坐标形式,即一个转动自由度两个一栋栋自由度,其特点是:结构比较简单,手臂运动范围大,且有较高的定位准确度。机械手工作布局图如图2-2所示。2.2 机械手腰座结构的设计2.2.1 腰坐结构的设计要求机械手的腰座,就是机械手的回转基座。它是机械手的第一个回转关节,承受了机械手的全部重量。因此在设计机械手腰座结构时,有以下设计要求:1. 腰座要有足够大的安装基面,以保证机器人在工作时整体安装的稳定性。2. 腰座要承受机器人全部的重量和载荷,因此,机器人的基座和腰部轴及轴承的结构要有足够大的强度和刚度,以保证其承载能力。3. 机器人的腰座是机器人的第一个回转关节,它对机器人末端的运动精度影响最大,因此,在设计时要特别注意腰部轴系及传动链的精度与刚度的保证。4. 腰部的回转运动要有相应的驱动装置,它包括驱动器(电动、液压及气动)及减速器。驱动装置一般都带有速度与位置传感器,以及制动器。5. 腰部结构要便于安装、调整。腰部与机器人手臂的联结要有可靠的定位基准面,以保证各关节的相互位置精度。要设有调整机构,用来调整腰部轴承间隙及减速器的传动间隙。6. 为了减轻机器人运动部分的惯量,提高机器人的控制精度,一般腰部回转运动部分的壳体是由比重较小的铝合金材料制成,而不运动的基座是用铸铁和铸钢材料制成。2.2.2 具体设计方案腰座回转的驱动形式主要有两种,一是电机通过减速机构来实现,二是通过摆动液压缸或液压马达来实现。考虑到腰座是机械手的第一个回转关节,对机械手的最终精度影响大,故采用电机驱动来实现腰部的回转运动。因为电动方式控制的精度高,结构紧凑,不用额外设计液压系统及其辅助元件。由于电机都不能直接驱动,并考虑到转速以及扭矩的具体要求,故采用大传动比的齿轮传动系统进行减速和扭矩的放大。由于齿轮传动存在着齿侧间隙,影响传动精度,故仅采用一级齿轮传动,采用大的传动比(大于100),同时为了减小传动误差,齿轮采用高强度、高硬度的材料,高精度加工制造。腰座具体结构如图2-3所示:2.3 机械手臂的结构设计2.3.1 机械手臂的设计要求机械手的手臂在工作时,要承受一定的载荷,且其运动本身具有一定的速度,因此,机械手手臂的设计需要遵循以下设计要求:1. 工作空间的形状和大小与机械手手臂的长度,手臂关节的转动范围有密切的关系,因此手臂尺寸设计应合理,一般满足其工作空间即可。2. 为了提高机械手的运动速度与控制精度,应在保证机械手手臂有足够强度和刚度的条件下,尽可能在结构上、材料上设法减轻手臂的重量。3. 应尽可能使机械手手臂各关节轴相互平行;相互垂直的轴应尽可能相交于一点,这样可以使机械手运动学正逆运算简化,有利于机械手的控制。4. 机械手各关节的轴承间隙要尽可能小,以减小机械间隙所造成的运动误差。5. 为提高机械手手臂运动的响应速度、减小电机负载,机械手的手臂相对其关节回转轴应尽可能在重量上平衡。2.3.2 设计具体采用方案机械手的垂直手臂升降和水平手臂的伸缩运动都为直线运动。直线运动的实现一般是气动传动,液压传动以及电动机驱动滚珠丝杠来实现。考虑到搬运工件的重量较大,考虑加工工件的质量达30KG,属中型重量,同时考虑到机械手的动态性能及运动的稳定性,安全性,对手臂的刚度有较高的要求。综合考虑,两手臂的驱动均选择液压驱动方式,通过液压缸的直接驱动,液压缸既是驱动元件,又是执行运动件,不用再设计另外的执行件了;而且液压缸实现直线运动,控制简单,易于实现计算机的控制。因为液压系统能提供很大的驱动力,因此在驱动力和结构的强度都是比较容易实现的,关键是机械手运动的稳定性和刚度的满足。因此手臂液压缸的设计原则是刚的直径取的大一点(在整体结构允许的情况下),再进行强度的较核。同时,因为控制和具体工作的要求,机械手的手臂的结构不能太大,若仅仅通过增大液压缸的缸径来增大刚度,是不能满足系统刚度要求的。因此,在设计时另外增设了导杆机构,小臂增设了两个导杆,与活塞杆一起构成等边三角形的截面形式,尽量增加其刚度;大臂增设了四个导杆,成正四边形布置,为减小质量,各个导杆均采用空心结构。通过增设导杆,能显著提高机械手的运动刚度和稳定性,比较好的解决了结构、稳定性的问题。2.4 机械手腕部的结构设计机械手手腕是机械手操作机的最末端,与手爪相连接,它与机械手手臂配合,使手爪在空间运动,完成所需要的作业动作。2.4.1 机器人手腕结构的设计要求、由于手腕安装在机械手末端,因此要求手腕设计应尽量小巧轻盈,结构紧凑。、根据作业需要,设计机械手手腕的自由度。一般情况下,自由度数目愈多,腕部的灵活性愈高,对对作业的适应能力也愈强。但自由度的增加,必然使腕部结构更复杂,控制更困难,成本也会相应增加。因此,手腕的自由度数,应根据实际作业要求来确定。、为实现腕部的通用性,要求有标准的连接法兰,以便于和不同的机械手手爪进行连接。、为保证工作时力的传递和运动的连贯,腕部结构要有足够的强度和刚度。、要设有可靠的传动间隙调整机构,以减小空回间隙,提高传动精度。、手腕各关节轴转动要有限位开关,并设置硬限位,以防止超限造成机械损坏。2.4.2 设计具体采用方案通过对数控机床上下料作业的具体分析,考虑数控机床加工的具体形式及对机械手上下料作业时的具体要求,在满足系统工艺要求的前提下提高安全和可靠性,为使机械手的结构尽量简单,降低控制的难度,本设计手腕不增加自由度,实践证明这是完全能满足作业要求的,3个自由度来实现机床的上下料完全足够。具体的手腕(手臂手爪联结梁)结构见图2-4。 图2-4 手抓联结结构2.5 机械手手抓的结构设计2.5.1 机械手手抓的结构设计要求手爪是用来进行操作及作业的装置,其种类很多,根据操作及作业方式的不同,分为搬运用、加工用、测量用等。搬运用手爪是指各种夹持装置,用来抓取或吸附被搬运的物体;加工用手爪是带有喷枪、焊枪、砂轮、铣刀等加工工具的机械手附加装置,用来进行相应的加工作业;测量用手爪是装有测量头或传感器的附加装置,用来进行测量及检验作业。机械手手爪设计有如下要求:、机械手手爪是根据机械手作业要求来设计的。既根据其应用场合设计手爪,在满足作业要求的前提下,机械手手爪还要求体积小、重量轻、结构紧凑。、机械手手爪的万能性与专用性是矛盾的。万能手爪在结构上很复杂,甚至很难实现,从工业实际应用出发,应着重开发各种专用的、高效率的机械手手爪,加之以快速更换装置,以实现机械手的多种作业功能,而不主张用一个万能的手爪去完成多种作业,以考虑设计的经济效益。、机械手手爪的通用性。通用性是指有限的手爪,可适用于不同的机械手,这就要求末端执行器要有标准的机械接口(如法兰),使末端执行器实现标准化。、机械手手爪要便于安装和维修,易于实现计算机控制。2.5.2驱动方式一般工业机械手手爪,多为双指手爪。按手指的运动方式,可分为回转型和移动型;按夹持方式来分,有外夹式和内撑式两种。机械手夹持器(手爪)的驱动方式主要有三种:1.气动驱动方式这种驱动系统是用电磁阀来控制手爪的运动方向,用气流调节阀来调节其运动速度。由于气动驱动系统价格较低,所以气动夹持器在工业中应用较为普遍。另外,由于气体的可压缩性,使气动手爪的抓取运动具有一定的柔顺性,这一点是抓取动作十分需要的。2.电动驱动方式电动驱动手爪应用也较为广泛。这种手爪,一般采用直流伺服电机或步进电机,并需要减速器以获得足够大的驱动力和力矩。电动驱动方式可实现手爪的力与位置控制。但是,这种驱动方式不能用于有防爆要求的条件下,因为电机有可能产生火花和发热。3.液压驱动方式液压驱动方式是利用液压系统进行控制,传动刚度大,可实现连续位置控制。2.5.3典型结构机械手手爪的典型结构有以下五种:1.楔块杠杆式手爪利用楔块与杠杆来实现手爪的松、开,来实现抓取工件。2.滑槽式手爪当活塞向前运动时,滑槽通过销子推动手爪合并,产生夹紧动作和夹紧力,当活塞向后运动时,手爪松开。这种手爪开合行程较大,适应抓取大小不同的物体。3.连杆杠杆式手爪在活塞的推力下,连杆和杠杆使手爪产生夹紧(放松)运动,由于杠杆的力放大作用,这种手爪有可能产生较大的夹紧力。通常与弹簧联合使用。4.齿轮齿条式手爪通过活塞推动齿条,齿条带动齿轮旋转,产生手爪的夹紧与松开动作。5.平行杠杆式手爪采用平行四边形机构,因此不需要导轨就可以保证手爪的两手指保持平行运动,且比带有导轨的平行移动手爪的摩擦力要小得多。2.5.4具体设计方案结合具体的工作情况,本设计采用连杆杠杆式的手爪。驱动活塞往复移动,通过活塞杆端部齿条,中间齿条及扇形齿条使手指张开或闭合。手指的最小开度由加工工件的直径来调定。本设计按照工件的直径为50mm来设计。手爪的具体结构形式如图2-3所示:2.6 机械手的机械传动机构的设计2.6.1工业机器人传动机构设计应注意的问题 机器人是由多级联杆和关节组成的多自由度的空间运动机构。除直接驱动型机器人以外,机器人各联杆及关节的运动都是由驱动器经过各种机械传动机构进行驱动的。机器人所采用的传动机构与一般机械的传动机构相类似。常用的机械传动机构主要有螺旋转动、齿轮传动、同步带传动、高速带传动等。由于传动部件直接影响机器人的精度、稳定性和快速响应能力,因此应设计和选择满足传动间隙小精度高,低摩擦、体积小、重量轻、运动平稳、响应速度快、传递转矩大大、谐振频率高以及与伺服电动机等其它环节的动态性能相匹配等要求的传动部件。在设计机器人的传动机构时要注意一下问题:、机械手的传动机构要力求结构紧凑,重量轻,体积小,以提高机械手的运动速度及控制精度。并在传动链及运动副中采用间隙调整机构,以减小反向空回所造成的运动误差。、尽量减少系统运动部件的静摩擦力,而正摩擦力为尽可能小的正斜率,以消除爬行现象,增加系统寿命。、尽量缩短传动链,提高传动与支承刚度。、选用最佳传动比,以达到提高系统分辨率、减少等效到执行元件输出轴上的等效转动惯量,尽可能提高加速能力。、适当的阻尼比。阻尼比越大,零件产生振动时最大振幅越小,衰减越快。但大的阻尼会使系统误差增大,精度降低。故应采取合适的阻尼比。2.6.2 工业机器人常用的传动机构形式常用的机械传动机构主要有螺旋传动、齿轮传动、链传动、同步带传动等。1.螺旋传动它主要是用来将旋转运动变换为直线运动或将直线运动变换为旋转运动。有传递能量为主的,如螺旋压力机、千斤顶等;有以传递运动为主的,如机床工作台的进给丝杠。2.齿轮传动在机械手中常用的齿轮传动机构有圆柱齿轮,圆锥齿轮,谐波齿轮,摆线针轮及蜗轮蜗杆传动等。齿轮传动部件是转矩、转速和转向的变换器,用于伺服系统的齿轮减速器是一个力矩变换器。齿轮传动时,齿轮传动形式及其传动比必须是最佳匹配,应满足驱动部件与负载之间的位移及转矩、转速的匹配要求,其输入电动机为高转速,低转矩,而输出则为低转速,高转矩,且系统要有足够的刚度。同时,为保证在同一驱动功率时,其加速度响应最大,还要求其转动惯量尽量小。为使系统稳定,不产生传动死区,要尽量采用齿侧间隙小,精度高的齿轮,并采用调整齿侧间隙的方法来消除或减小啮合间隙,从而提高传动精度和系统的稳定性,降低成本。3.链传动在机械手中链传动多用于腕传动上,为了减轻机械手末端的重量,一般都将腕关节驱动电机安装在小臂后端或大臂关节处。由于电机距离被传动的腕关节较远,故采用精密套筒滚子链来传动。4.同步带传动同步带传动是综合了普通带传动和链传动优点的一种新型传动。为保证带和带轮作无滑动的同步传动,在带的工作面及带轮外周上均制有采用承载后无弹性变形的高强力材料制成啮合齿,通过齿间啮合进行传动。其特点是传动比准确、传动效率高(可达98%)、节能效果好;能吸振、噪声低、不需要润滑;传动平稳,能高速传动(可达40m/s)、传动比可达10,结构紧凑、维护方便等优点,故在机械手中使用很多。2.6.3 具体设计方案 因为选用了液压缸作为机械手的水平手臂和垂直手臂,由于液压缸实现直接驱动,它既是关节机构,又是动力元件。故不需要中间传动机构,这既简化了结构,同时又提高了精度。而机械手腰部回转运动采用步进电机驱动,必须采用传动机构来减速和增大扭矩。经济分析比较,选择圆柱齿轮传动,为了保证比较高的精度,尽量减小因齿轮传动造成的误差;同时大大增大扭矩,同时较大的降低电动机转速,以使机械手的运动平稳,动态性能好。这里只采用一级齿轮传动,采用大的传动比(大于100)齿轮采用高强大、高硬度的材料,高精度加工制动2.7机械手驱动系统设计2.7.1常用驱动系统及其特点工业常用驱动系统,按动力源分为液压、气动和电动三大类。根据需要也可将这三种基本类型组合成复合式的驱动系统。这三类基本驱动系统的主要特点如下。1.液压驱动系统具有动力大、力(或力矩)与惯量比大、快速响应高、易于实现直接驱动、精度高等特点。适合于在承载能力大,惯量大以及在防火防爆的环境中工作的机械手。2.气动驱动系统具有速度快,系统结构简单,维修方便、价格低等特点。适用于中、小负荷的机械手中采用。但是因难于实现伺服控制,多用于程序控制的机械手中。3.电动驱动系统具有使用方便,噪声较低,控制灵活等特点。这类驱动系统不需要能量转换,但大多数电机后面需安装精密的传动机构。2.7.2具体设计方案在分析了具体工作要求后,综合考虑各个因素,机械手腰部的旋转运动需要一定的定位控制精度,因此采用步进电动机来实现。由于手臂采用液压缸,故用液压驱动。随着机床加工的工件的不同,手臂伸出长度不同,要求手臂具有伺服定位能力,故采用电液伺服液压缸进行驱动。而手爪的张开和夹紧通过液压柱塞缸活塞与中间齿轮和扇形齿轮配合来实现,即手爪在柱塞缸推力作用下通过活塞杆端部齿条、中间齿轮及扇形齿轮使手指张开和闭合。2.8 机器人手臂的平衡机构设计 直角坐标型、圆柱坐标型和球坐标型机器人可以通过合理布局,优化设计结构,使得手臂本身可能达到平衡。关节机器人手臂一般都需要平衡装置,一减小驱动器的负荷,同时缩短启动时间。2.8.1 机器人平衡机构的形式 通常,机器人所采用的平衡机构主要有以下几种:1.配重平衡机构这种平衡装置结构简单,平衡效果好,易于调整,工作可靠,但增加了机器人手臂的惯量与关节轴的载荷。一般在机器人手臂的不平衡力矩比较小的情况下采用这种平衡机构。2.弹簧平衡机构弹簧平衡机构,机构简单、造价低、工作可靠、平衡效果好、易维修,因此应用广泛。3.活塞推杆平衡机构活塞式平衡系统有液压和气动两种:液压平衡小童平衡力大,体积小,有一定的阻尼作用:气动平衡系统,具有很好的阻尼作用,但体积比较大。活塞式平衡需要配备有专门的液压或气动装置,系统复杂,因此造价高,设计、安装和调试都增加了难度,但是平衡效果好。用于配重平衡、弹簧平衡满足不了工作要求的场合。2.8.2 设计具体采用的方案因为本设计机械手采用圆柱坐标型的结构,而且在手臂的结构设计以及整个机械手的设计和布局中都重点考虑了机械手手臂的平衡问题,通过合理布局,优化设计结构,使得手臂本身尽可能达到平衡。若实际工作中平衡结果不满足,则设置弹簧平衡机构进行平衡。第三章 理论分析和设计计算3.1 液压传动系统设计计算3.1.1 确定液压系统基本方案 液压执行元件大体分为液压缸和液压马达,前者实现直线运动,后者实现回转运动。二者的特点及适用场合见表3-1:名称特点适用场合双活塞液压缸双向对称双向工作的往复场合单活塞液压缸有效工作面积大、双向不对称往返不对称的直线运动,差动连接可实现快进柱塞缸结构简单单向工作,靠重力或其他外力返回摆动缸单叶片式小于360双叶片式小于180小于360的摆动小于180的摆动齿轮马达结构简单、价格便宜高转速、低转矩的回转运动叶片马达体积小、转动惯量小高速低转矩、动作灵敏的回转运动摆线齿轮马达体积小、输出转矩大低速、小功率大转矩的回转运动轴向柱塞马达运动平稳、转矩大、转速范围宽大转矩的回转运动径向柱塞马达转速低、结构复杂、输出转矩大低速大转矩回转运动 表3 1因为机械手设计为圆柱坐标形式,且具有3个自由度,一个为腰座的转动,两个为手臂的移动自由度。同时考虑机械手的工作环境和载荷对其布局和定位精度的要求,以及计算机的控制的因素,腰部的回转用电机驱动实现,机械手的水平手臂和垂直手臂都采用单活塞杆液压缸,来实现直线往复运动。3.1.2 拟定液压执行元件运动控制回路液压执行元件确定后,其运动速度和运动方向的控制是液压回路的核心问题。速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现。相应的调速方式有节流调速、容积调速以及二者结合的容积节流调速;方向控制是用换向阀或是逻辑控制单元来实现。对于一般中小流量的液压系统,通过换向阀的有机组合来实现所要求的动作。对高压大流量的系统,多采用插装阀与先导控制阀的逻辑组合来实现。 本设计的速度的控制主要采用节流调速,利用用比较简单的节流阀来实现,而方向控制采用电磁换向阀来实现。3.1.3 液压源系统的设计液压系统的工作介质完全由液压源来提供,液压源的核心是液压泵。节流调速系统一般用定量泵供油,在无其他辅助油源的情况下,液压泵的供油量要大于系统的需油量,多余的油经溢流阀流回油箱,溢流阀同时起到控制并稳定油源压力的作用。容积调速系统多用变量泵供油,用安全阀来限定系统的最高压力。油液的净化装置是液压源中不可缺的元件。一般泵的入口要装粗滤油器,进入系统的油液根据要求,通过精滤油器再次过滤。为防止系统中杂质流回油箱,可在回油路上设置磁过滤器。根据液压设备所处的环境及对温升的要求,还要考虑加热、冷却等措施。本设计的液压系统采用定量泵供油,由溢流阀V1来调定系统压力。为了保证液压油的洁净,避免液压油带入污染物,故在油泵的入口安装粗过滤器,而在油泵的出口安装精过滤器对循环的液压油进行净化。3.1.4 绘制液压系统图本机械手的液压系统图如图3-1所示它拥有垂直手臂的上升、下降,水平手臂的前伸、后缩,以及执行手爪的夹紧、张开三个执行机构。其中,泵由三相交流异步电动机M拖动;系统压力由溢流阀V1调定;1DT的得失电决定了动力源的投入与摘除。考虑到手爪的工作要求轻缓抓取、迅速松开,系统采用了节流效果不等的两个单向节流阀。当5DT得电时,工作液体经由节流阀V5进入柱塞缸,实现手爪的轻缓抓紧;当6DT失电时,工作液体进入柱塞缸中,实现手爪迅速松开。另外,由于机械手垂直升降缸在工作时其下降方向与负荷重力作用方向一致,下降时有使运动速度加快的趋势,为使运动过程的平稳,同时尽量减小冲击、振动,保证系统的安全性,采用V2构成的平衡回路相升降油缸下腔提供一定的排油背压,以平衡重力负载。3.1.5 确定液压系统的主要参数液压系统的主要参数是压力和流量,他们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷,流量取决于液压执行元件的运动速度和结构尺寸。1.计算液压缸的总机械载荷根据机构的工作情况液压缸所受的总机械载荷为 F=Fw+Fm+Fsf+Ff+Fb式中,Fw为外加的载荷,因为水平方无外载荷,故为0; Fm为活塞上所受的惯性力; Fsf为密封阻力; Ff为导向装置的摩擦阻力; Fb为回油被压形成的阻力; (1)Fm的计算 Fm=G/g*v/t式中,G为液压缸所要移动的总重量,取为100KG; g为重力加速度,9.81m/s2 v为速度变化量; t为启动或制动时间,一般为0.01 0.5s,取0.2s将各值代入上式,得:Fm=1.02N (2)Fsf=Pf*A1式中,Pf为克服液压缸密封件摩擦阻力所需空载压力,如该液压缸工作压力16Mpa; A1为进油工作腔有效面积;启动时: Fsf=565N运动时: Fsf=283N (3)Ff的计算 机械手水平方向上有来年各个导杆,内导杆和外导杆之间的摩擦力为 Ff=G*f式中,G为机械手和所操作工件的总重量,取为100KG; F为摩擦系数,取f=0.1;代入数据计算得:Ff=98N (4)Fb的计算 回油被压形成的阻力按下式计算 Fb=Pb*A2式中,Pb为回油被压,一般为0.3MPa0.5 Mpa,取=0.3 MpaA2为有杆腔活塞面积,考虑来那个边差动比为2;将各值代入上式有,Fb=424N分析液压缸各工作阶段受力情况,作用在活塞上的总机械载荷为 F=1088N。2.手爪执行液压缸工作压力计算 手爪能抓起工件必须满足:NK1*K2*k3*G式中,N为所需夹持力;K1为安全系数,通常取1.22;K2为动载系数,主要考虑惯性力的影响可按K2=1+a/g估算,a为机械手在搬运工件过程的加速度m/s2,a=9.8 m/s2,g为重力加速度;k3为方位系数,查表选取k31;G为被抓持工件的重量 30kg;代入数据,计算得: N=120N;理论驱动力的计算:p=2b/R*N*1/式中 p为柱塞缸所需理论驱动力;b为夹紧力至回转支点的垂直距离;R为扇形齿轮分度圆半径;N为手指夹紧力;为齿轮传动机构的效率,此处选为0.92;其他同上。代入数据,计算得 P=377N计算驱动力计算公式为:Fc=K1*K4*F/式中Fc为计算驱动力; K1为安全系数,此处选为1.2; K4为工作条件系数,慈溪浒选为1.1;其他同上。代入数据,计算得: Fc=920N而液压缸的工作驱动力是由缸内油压提供的,故有 Fc=P*A式中,P为柱塞缸工作油压; A为柱塞截面积;经计算,所需的油压约为: 3Mpa3.液压缸主要参数的确定考虑到机械手的特点,系统的刚度及其稳定性是很重要的。因此,先从刚度角度进行液压缸缸径的选择,以尽量优先保证机械手的结构和运动的稳定性和安全性。至于液压缸的工作压力和缸的工作速度,放在液压系统设计阶段,通过外部的液压回路、采用合适的调速回路和元件来实现。经过仔细分析,综合考虑各方面的因素,初步确定各液压缸的基本参数如下;因为伸缩缸的作用主要是实现直线运动,在其轴向上并不承受显性的工作载荷(因为手爪夹持工件,受力方向为垂直方向),轴向主要是克服摩擦力矩,其所受的载荷主要是径向载荷,载荷性质为弯矩,使其产生弯曲变形。而且因为机械手要求具有一定的柔性,水平液压缸活塞杆要求具有比较大的工作行程。同时具有比较大的弯矩和比较长的行程,这对液压缸的稳定性和刚度有较高的要求。因此,在水平伸缩缸的设计上,一是增大其抗弯能力,二是通过合理的结构布局设计,使其具有尽量大的刚度。为了达到这个目的,设计中采用了两个导向杆,以满足长行程活塞杆的稳定性和导向问题。另一方面,为增大结构的刚度和稳定性,将两个导向杆与活塞杆布局成等边三角形的截面形式,以增大抗弯截面模量,也大大增加了液压缸的工作刚度。因为垂直液压缸所承受的载荷方式既有一定的轴向载荷,又存在着比较大的倾覆力矩(由加工工件的重力引起的)。作为液压执行元件,满足此处的驱动力要求是轻而易举的,要解决的关键问题仍然是它的结构设计能否有足够的刚度来抗倾覆。这里同样采用了导向杆机构,围绕垂直升降缸设置四根导杆,较好的解决了这一问题。4.液压缸强度的较核 (1)缸筒壁厚的较核 当D/10时,液压缸壁厚的较核公式如下: 式中,D为缸筒内径; Py为缸筒试验压力,当缸的额定压力Pn16Mpa时,取为Py=1.5Pn; 为缸筒材料的许用应力,=b/n,b为材料抗拉强度,经查相关资料取为650Mpa,n为安全系数,此处代入数据计算,上式成立。因此液压缸壁厚强度满足要求。 (2)活塞缸直径的较核活塞缸直径的较核公式为式中,F为活塞杆上的作用力; 为活塞杆材料的许用应力,此处=b/1.4;代入数据,进行计算较核得上式成立,因此活塞杆的强度能满足工作要求。3.1.6计算和选择液压元件1. 控制元件的选择根据系统最高工作压力和通过该阀的最大流量,在标准元件的产品样本中选取各控制元件。2. 液压泵的计算(1)确定液压泵的实际工作压力Pp Pp=P1+P1式中,P1为计算机工作压力,以前定为4Mpa; P1为对于进油采用调速阀系统,可估为(0.51.5)Mpa,这里取为1 Mpa。因此,可以确定液压泵的实际工作压力为 Pp=4+1=5Mpa(2)确定液压泵的流量 Qp=K*Qmax式中,K为泄露因数,取1.1; Qmax为机械手工作时最大流量。 Qmax=A*v经计算得 Qmax=3.140L/min (3)确定液压泵电机的功率 式中,Qmax为最大运动速度下需的流量,同前,取为3.14L/min; Pp为液压泵实际工作压力,5Mpa; 为液压泵总效率,取为0.8;代入数据计算得: 2. 根据系统最高工作压力和通过该阀的最大流量,在标准元件的产品样本中选取各控制元件。3. 油管及其他辅助装置的选择(1)查阅设计手册,选择油管公称通径、外径、壁厚参数 液压泵出口流量以3.140L/MIN计,选取6;液压泵吸油管稍微粗些,选择8;其余都选为5;(2)一般取泵流量的35倍,这里取为5倍,有效容积为3.2 电机选型有关参数计算3.2.1 有关参数的计算1.若传动负载作直线运动(通过滚珠丝杠)则有 负载额定功率:Po=*W*VL/6*104 负载加速功率:Pa=GDL2*N L2/3577*103*Ta负载力矩(折算到电机轴):负载GD2(折算到电机轴):启动时间:制动时间:2.若传动负载作回转运动负载额定功率:负载加速功率:负载力矩(折算到电机轴):负载GD(折算到电机轴):启动时间:制动时间:式中,Po为额定功率,KW; Pa为加速功率,KW; N1为负载轴回转速度,r/min; NM为电机轴回转速度,r/min; V1为负载的速度,m/min; 为减速机效率; 为摩擦系数 T1为负载转矩(负载轴),N.m; Tp为电机启动最大转矩,N.m; TL为负载转矩(折算到电机轴上)N.m;GD12为负载的GD2,N/m2;GDL2为负载GD2(折算到电机轴上),N/m2;GDM2为电机的GD2,N/m2;具体到本设计,因为步进电机是驱动腰部的回转,传递运动形式属于第二种。下面进行具体的计算。因为腰部回转运动只存在摩擦力矩,在回转圆周方向上不存在其他的转矩,则在回转轴上有:式中,f为滚动轴承摩擦系数,取0.005; G为机械手本身与负载的重量之和,取100KG; R为回转轴上传动大齿轮分度圆半径,R=240mm;代入数据,计算得T1=0.12N.m 同时,腰部回转速度定为N1=5r/min;传动比定为1/120;且,GD1=mgD2代入数据得:。将其代入上式,得:启动时间 制动时间折算到电机轴上的负载转矩为:TL=0.0010523N.m。3.2.2 电机型号的选择 根据以上结果,中和考虑各种因素,选择国产北京和利时机电技术有限公司的步进电机,具体型号为:110BYG550B-SAKRMA-0301或110BYG550B-SAKRMT或110BYG550B-BAKRMT。 驱动方式:升频升压;步距角:0.36; 其中步距角0.36,同时因为腰部齿轮传动比为1:120步进电机经过减速后传递到回转轴,回转轴实际的步距角将为电机实际步距角的1/120(理论上),虽然实际上存在着间隙和齿轮传动非线性误差,实际回转轴的最小步距角也仍然是很小的,故其精度是相当高的,完全能满足机械手上下料的定位精度要求。第四章 机械手控制系统的设计4.1 硬件设计4.1.1 机械手工艺过程与控制要求 机械手的动作有水平手臂的伸缩,垂直手臂的升降,执行手抓的夹紧和松开以及腰部的旋转。其中,垂直升降和水平伸缩有液压实现驱动。而液压缸又由相应的电磁阀控制。其中,升降分别由双线圈的两位电磁阀控制,例如,当下降电磁阀通电时,机械手下降停止。只有当上升电磁阀通电时,机械手才上升;而当上升电磁阀断电时机械手上升停止。而水平方向的伸缩主要由电液伺服阀、伺服驱动器、感应式位移传感器构成的回路进行调节控制。 而执行手抓的加紧与放松,通过柱塞缸与齿轮来实现。柱塞缸由单线圈的电磁阀(夹紧电磁阀)来控制,当线圈不通电时,柱塞缸不工作,当线圈通电时,柱塞缸工作冲程,手抓张开,柱塞缸工作回程,手抓闭合。 当机械手旋转到机床上方时并准备下降进行上下料工作时,为了确保安全,必须在机床停止工作并发出上下料命
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人购房合同解除及终止条件
- 海运货物保险代理服务合同范本
- 专业遴选测试题及答案
- 边城课件课教学设计
- 幼儿园管理家园合作课件
- 消防安全服务培训班通知课件
- 2025至2030中国海藻酸锂行业项目调研及市场前景预测评估报告
- 2025年智能可穿戴设备无人机飞行安全监测技术创新解析
- 2025至2030中国工业真空阀行业项目调研及市场前景预测评估报告
- 2025至2030中国毛绒布料玩具行业发展趋势分析与未来投资战略咨询研究报告
- 2025年芜湖市鸠江区村级后备干部集中招录工作101名考试参考题库及答案解析
- 2025年少先队大队委笔试试卷及答案
- 瑞达利欧原则课件
- 2025一建《建设工程项目管理》冲刺361题
- 抖音账号实名认证承诺函模板
- 第一章 勾股定理 单元测试卷(含部分解析)-2025-2026学年北师大版八年级数学上册
- 2025年四川省高等职业教育单独考试招生语文试卷
- (2025年标准)以捐代购协议书
- 颈部引流管的护理
- 2025至2030中国门诊外科中心行业项目调研及市场前景预测评估报告
- 中医护理拔罐技术应用
评论
0/150
提交评论