



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
15 数列综合(二) 15 数列综合(二)一、 三维目标1知识与技能:理解等差数列、等比数列与函数、导数、不等式、方程、解析几何相联系的综合题。能用数列建模的实际应用题。2过程与方法:能在具体的问题情境中识别数列的等差关系或等比关系,抽象出数列的模型,并能用有关知识解决相应的问题。3情感、态度与价值观:培养学生运用数学的模型解决实际生活问题的能力,培养学生学数学、用数学的思维品质。二、学习重难点重点:等差、等比数列的证明须用定义证明;数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标.函数思想:等差等比数列的通项公式求和公式都可以看作是的函数,所以等差等比数列的某些问题可以化为函数问题求解.分类讨论思想:用等比数列求和公式应分为及;已知求时,也要进行分类;整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整体思想求解。 难点:在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.三、考纲解读 1.深刻理解等差(比)数列的性质,熟悉它们的推导过程是解题的关键.两类数列性质既有相似之处,又有区别,要在应用中加强记忆.同时,用好性质也会降低解题的运算量,从而减少差错. 2.在等差数列与等比数列中,经常要根据条件列方程(组)求解,在解方程组时,仔细体会两种情形中解方程组的方法的不同之处. 3.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等. 4.在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利息的计算、分期付款问题等,都可以利用数列来解决,因此要会在实际问题中抽象出数学模型,并用它解决实际问题.四、知识链接1.数列的前项和与通项的关系:2.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。3.等差数列和等比数列:等差数列等比数列定义(为常数,)递推公式()()通项公式()中项()()前项和重要性质从等差数列中抽取等距离的项组成的数列是一个等差数列。如:(下标成等差数列)从等比数列中抽取等距离的项组成的数列是一个等比数列。如:(下标成等差数列)证明方法证明一个数列为等差数列的方法:1.定义法2.中项法证明一个数列为等比数列的方法:1.定义法2.中项法设元技巧三数等差:四数等差:三数等比:四数等比:联系真数等比,对数等差; 指数等差,幂值等比。五、基础检测1.一个三角形的三内角成等差数列,对应的三边成等比数列,则三内角所成等差数列的公差等于 ( )A.0 B. C. D. ( ) A.2 B.3 C.4 D.5 4. ( )121六、学习过程例题1.七、达标训练1.下面有四个命题:( )如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;数列的图像是一群孤立的点;数列1,-1,1,-1,.与数列-1,1,-1,1是同一数列。其中正确命题的个数是A.1 B.2 C.3 D.42. ( )A.-3 B.5 C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合作协议书范文锦集十篇
- 2025河南中医药大学招聘高层次人才考前自测高频考点模拟试题参考答案详解
- 2025年溴氨蓝项目合作计划书
- 2025年云南事业单位真题
- 2025年浸渍、涂布或包覆处理纺织物项目合作计划书
- 2025徽商银行宣城分行社会招聘模拟试卷参考答案详解
- 2025年河北承德平泉市公开招聘社区工作者97人考前自测高频考点模拟试题完整参考答案详解
- 2025贵州金沙能源投资集团有限公司模拟试卷(含答案详解)
- 2025北京建筑大学第二批招聘24人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025安徽淮南高新区部分学校引进紧缺专业人才招聘39人考前自测高频考点模拟试题带答案详解
- 2025年国家电网《安规》考试判断题库及答案
- 2025上海美术馆招聘6人备考考试题库附答案解析
- 检验科二级生物实验室汇报
- 盾构姿态监测-洞察及研究
- 药店店员技巧培训
- 学生进厂安全培训课件
- 2025年四川省巴中市中考数学试题
- 乡村振兴课件简介模板
- (一检)泉州市2026届高三高中毕业班质量监测(一)数学试卷(含标准答案)
- 管道热处理课件
- 2025成人高考试题真卷数学及答案
评论
0/150
提交评论