2018届高考数学一轮总复习 第三章 三角函数、解三角形 文 新人教a版_第1页
2018届高考数学一轮总复习 第三章 三角函数、解三角形 文 新人教a版_第2页
2018届高考数学一轮总复习 第三章 三角函数、解三角形 文 新人教a版_第3页
2018届高考数学一轮总复习 第三章 三角函数、解三角形 文 新人教a版_第4页
2018届高考数学一轮总复习 第三章 三角函数、解三角形 文 新人教a版_第5页
已阅读5页,还剩103页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章三角函数、解三角形第一节 任意角和弧度制及任意角的三角函数1角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形(2)分类(3)终边相同的角:所有与角终边相同的角,连同角在内,可构成一个集合S|k360,kZ2弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式角的弧度数公式|(弧长用l表示)角度与弧度的换算1 rad;1 rad弧长公式弧长l|r扇形面积公式Slr|r23.任意角的三角函数三角函数正弦余弦正切定义设是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做的正弦,记作sin x叫做的余弦,记作cos 叫做的正切,记作tan 各象限符号三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线小题体验1若sin 0且tan 0,则是()A第一象限角B第二象限角C第三象限角D第四象限角答案:C2(教材习题改编)3 900是第_象限角,1 000是第_象限角答案:四一3(教材习题改编)已知半径为120 mm的圆上,有一条弧的长是144 mm,则该弧所对的圆心角的弧度数为_答案:1.21注意易混概念的区别:象限角、锐角、小于90的角是概念不同的三类角第一类是象限角,第二、第三类是区间角2角度制与弧度制可利用180 rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用3已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况4三角函数的定义中,当P(x,y)是单位圆上的点时有sin y,cos x,tan ,但若不是单位圆时,如圆的半径为r,则sin ,cos ,tan .小题纠偏1下列说法正确的是()A三角形的内角必是第一、二象限角B第一象限角必是锐角C不相等的角终边一定不相同D若k360(kZ),则和终边相同答案:D2若角终边上有一点P(x,5),且cos (x0),则sin _.答案:题组练透1给出下列四个命题:是第二象限角;是第三角限角;400是第四象限角;315是第一象限角其中正确的命题有()A1个B2个C3个 D4个解析:选C是第三象限角,故错误;,从而是第三象限角,故正确;40036040,从而正确;31536045,从而正确2(易错题)若角是第二象限角,则是()A第一象限角 B第二象限角C第一或第三象限角 D第二或第四象限角解析:选C是第二象限角,2k2k,kZ,kk,kZ.当k为偶数时,是第一象限角;当k为奇数时,是第三象限角3设集合M,N,那么()AMN BMNCNM DMN解析:选B法一:由于M,45,45,135,225,N,45,0,45,90,135,180,225,显然有MN.法二:由于M中,x18045k904545(2k1),2k1是奇数;而N中,x18045k4545(k1)45,k1是整数,因此必有MN.4在7200范围内所有与45终边相同的角为_解析:所有与45有相同终边的角可表示为:45k360(kZ),则令72045k3600,得765k36045,解得kcos x成立的x的取值范围为_解析:如图所示,找出在(0,2)内,使sin xcos x的x值,sincos,sincos.根据三角函数线的变化规律标出满足题中条件的角x.答案:10已知扇形AOB的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.解:设扇形AOB的半径为r,弧长为l,圆心角为,(1)由题意可得解得或或6.(2)法一:2rl8,S扇lrl2r224,当且仅当2rl,即2时,扇形面积取得最大值4.圆心角2,弦长AB2sin 124sin 1.法二:2rl8,S扇lrr(82r)r(4r)(r2)244,当且仅当r2,即2时,扇形面积取得最大值4.弦长AB2sin 124sin 1.三上台阶,自主选做志在冲刺名校1若是第三象限角,则下列各式中不成立的是()Asin cos 0 Btan sin 0Ccos tan 0 Dtan sin 0解析:选B是第三象限角,sin 0,cos 0,tan 0,则可排除A,C,D.2已知角2k(kZ),若角与角的终边相同,则y的值为()A1 B1C3 D3解析:选B由2k(kZ)及终边相同的概念知,角的终边在第四象限,又角与角的终边相同,所以角是第四象限角,所以sin 0,cos 0,tan 0.所以y1111.3已知sin 0,tan 0.(1)求角的集合;(2)求终边所在的象限;(3)试判断 tansin cos的符号解:(1)由sin 0,知在第三、四象限或y轴的负半轴上;由tan 0, 知在第一、三象限,故角在第三象限,其集合为.(2)由2k2k,kZ,得kk,kZ,故终边在第二、四象限(3)当在第二象限时,tan 0,sin 0, cos 0,所以tan sin cos取正号;当在第四象限时, tan0,sin0, cos0,所以 tansincos也取正号因此,tansin cos 取正号第二节 同角三角函数的基本关系与诱导公式_1同角三角函数的基本关系式(1)平方关系sin2cos21;(2)商数关系tan .2诱导公式组序一二三四五六角2k(kZ)正弦sin sin sin sin cos cos_余弦cos cos cos cos_sin sin 正切tan tan tan tan_口诀函数名不变符号看象限函数名改变符号看象限记忆规律奇变偶不变,符号看象限 小题体验1已知sin,那么cos ()ABC. D.解析:选Csinsincos ,cos .2若sin cos ,则tan 的值是()A2 B2C2 D.解析:选Btan 2.3(教材习题改编)(1)sin_,(2)tan_.答案:(1)(2)1利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负脱周化锐特别注意函数名称和符号的确定2在利用同角三角函数的平方关系时,若开方,要特别注意判断符号3注意求值与化简后的结果一般要尽可能有理化、整式化小题纠偏1(2019福建高考)若sin ,且为第四象限角,则tan 的值等于()A. BC. D解析:选D因为为第四象限的角,故cos ,所以tan .2若sin(3),则sin _.答案:题组练透1sin 210cos 120的值为()A.BC D.解析:选Asin 210cos 120sin 30(cos 60).2已知A(kZ),则A的值构成的集合是()A1,1,2,2B1,1C2,2 D1,1,0,2,2解析:选C当k为偶数时,A2;k为奇数时,A2.3已知tan,则tan_.解析:tantantantan.答案:4(易错题)设f(),则f_.解析:f(),f.答案:谨记通法1利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角就好了”2利用诱导公式化简三角函数的要求(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值,如“题组练透”第4题典型母题已知是三角形的内角,且sin cos .求tan 的值解法一:联立方程由得cos sin ,将其代入,整理得25sin25sin 120.是三角形的内角,tan .法二:sin cos ,(sin cos )22,即12sin cos ,2sin cos ,(sin cos )212sin cos 1.sin cos 0且0,sin 0,cos 0,sin cos 0.sin cos .由得tan .类题通法同角三角函数基本关系式的应用技巧技巧解读适合题型切弦互化主要利用公式tan 化成正弦、余弦,或者利用公式tan 化成正切表达式中含有sin ,cos 与tan “1”的变换1sin2cos2cos2(1tan2)tan(sin cos )22sin cos 表达式中需要利用“1”转化和积转换利用(sin cos )212sin cos 的关系进行变形、转化表达式中含有sin cos 或sin cos 越变越明变式一保持母题条件不变,求:(1);(2)sin22sin cos 的值解:由母题可知:tan .(1).(2)sin22sin cos .变式二若母题条件变为“5”, 求tan 的值解:法一:由5, 得5,即tan 2.法二:由5,得sin 3cos 15cos 5sin ,6sin 12cos ,即tan 2.变式三若母题中的条件和结论互换:已知是三角形的内角,且tan , 求 sin cos 的值解:由tan ,得sin cos ,将其代入 sin2cos21,得cos21,cos2,易知cos 0,cos , sin ,故 sin cos .破译玄机1三角形中求值问题,首先明确角的范围,才能求出角的值或三角函数值2三角形中常用的角的变形有:ABC,2A2B22C,等,于是可得sin(AB)sin C,cossin等一抓基础,多练小题做到眼疾手快1若,sin ,则cos()()AB.C. D解析:选B因为,sin ,所以cos ,即cos().2已知sin()cos(2),|,则等于()A BC. D.解析:选Dsin()cos(2),sin cos ,tan .|,.3已知sin,则cos()A. BC. D解析:选Dcossinsinsin.4已知,sin ,则tan _.解析:,cos ,tan .答案:5如果sin(A),那么cos的值是_解析:sin(A),sin A.cossin A.答案:二保高考,全练题型做到高考达标1已知sin()0,则下列不等关系中必定成立的是()Asin 0Bsin 0,cos 0,cos 0 Dsin 0,cos 0解析:选Bsin()0,sin 0.cos()0,cos 0,cos 0.2若sin()2sin,则sin cos 的值等于()A BC.或 D.解析:选A由sin()2sin,可得sin 2cos ,则tan 2,sin cos .3(2019江西五校联考)()A BC. D.解析:选D原式.4已知f(),则f的值为()A. BC D.解析:选Cf()cos ,fcoscoscos.5已知sin cos ,且,则cos sin 的值为()A B.C D.解析:选B,cos 0,sin 0且|cos |0.又(cos sin )212sin cos 12,cos sin .6化简:_.解析:原式sin sin 0.答案:07sincostan的值是_解析:原式sincostan().答案:8已知cosa(|a|1),则cossin的值是_解析:由题意知,coscoscosa.sinsincosa,cossin0.答案:09求值:sin(1 200)cos 1 290cos(1 020)sin(1 050)tan 945.解:原式sin 1 200cos 1 290cos 1 020(sin 1 050)tan 945sin 120cos 210cos 300(sin 330)tan 225(sin 60)(cos 30)cos 60sin 30tan 4512.10已知sin(3)2sin,求下列各式的值:(1);(2)sin2sin 2.解:由已知得sin 2cos .(1)原式.(2)原式.三上台阶,自主选做志在冲刺名校1sin21sin22sin290_.解析:sin21sin22sin290sin21sin22sin244sin245cos244cos243cos21sin290(sin21cos21)(sin22cos22)(sin244cos244)sin245sin290441.答案:2已知f(x)(nZ)(1)化简f(x)的表达式;(2)求f f 的值解:(1)当n为偶数,即n2k(kZ)时,f(x)sin2x;当n为奇数,即n2k1(kZ)时,f(x)sin2x,综上得f(x)sin2x.(2)由(1)得ffsin2sin2sin2sin2sin2cos21.第三节 三角函数的图象与性质1用五点法作正弦函数和余弦函数的简图正弦函数ysin x,x0,2的图象上,五个关键点是:(0,0),(,0),(2,0)余弦函数ycos x,x0,2的图象上,五个关键点是:(0,1),(,1),(2,1)2正弦、余弦、正切函数的图象与性质(下表中kZ).函数ysin xycos xytan x图象定义域RRxxR,且x值域1,11,1R周期性22奇偶性奇函数偶函数奇函数单调性为增;为减2k,2k为减;2k,2k为增为增对称中心(k,0)对称轴xkxk小题体验1下列函数中,最小正周期为的奇函数是()Aycos 2xBysin 2xCytan 2x Dysin答案:B2(教材习题改编)函数y4sin x,x,的单调性是()A在,0上是增函数,在0,上是减函数B在上是增函数,在和上都是减函数C在0,上是增函数,在,0上是减函数D在和上是增函数,在上是减函数答案:B3(教材习题改编)函数ytan2的定义域为_答案:1闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响2要注意求函数yAsin(x)的单调区间时的符号,尽量化成0时的情况3三角函数存在多个单调区间时易错用“”联结小题纠偏1函数f(x)sin在区间上的最小值为()A1 BC. D0解析:选B由已知x,得2x,所以sin,故函数f(x)sin在区间上的最小值为.2函数ycos的单调减区间为_解析:由ycoscos得2k2x2k(kZ),解得kxk(kZ)所以函数的单调减区间为(kZ)答案:(kZ)题组练透1函数y2sin(0x9)的最大值与最小值之和为()A2B0C1 D1解析:选A0x9,x,sin.y,2,ymaxymin2.2(易错题)函数y的定义域为_解析:要使函数有意义,必须有即故函数的定义域为.答案:3函数ylg(sin 2x)的定义域为_解析:由得3x或0x0)在区间上单调递增,在区间上单调递减,则_.解析:f(x)sin x(0)过原点,当0x,即0x时,ysin x是增函数;当x,即x时,ysin x是减函数由f(x)sin x(0)在上单调递增,在上单调递减知,.答案:命题分析正、余弦函数的图象既是中心对称图形,又是轴对称图形正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心;(3)三角函数对称性的应用题点全练角度一:三角函数的周期1函数y12sin2是()A最小正周期为的奇函数B最小正周期为的偶函数C最小正周期为的奇函数D最小正周期为的偶函数解析:选Ay12sin2cos 2sin 2x,所以f(x)是最小正周期为的奇函数2(2019长沙一模)若函数f(x)2tan的最小正周期T满足1T2,则自然数k的值为_解析:由题意知,12,即k2k.又kN,所以k2或k3.答案:2或3角度二:求三角函数的对称轴或对称中心3(2019太原模拟)已知函数f(x)sin(0)的最小正周期为,则函数f(x)的图象()A关于直线x对称B关于直线x对称C关于点对称 D关于点对称解析:选Bf(x)sin的最小正周期为,2,f(x)sin.当x时,2x,A,C错误;当x时,2x,B正确,D错误角度三:三角函数对称性的应用4(2019西安八校联考)若函数ycos(N*)图象的一个对称中心是,则的最小值为()A1 B2C4 D8解析:选Bk(kZ)6k2(kZ)min2.5.设偶函数f(x)Asin(x)(A0,0,00)的最小正周期为,则f ()A1B.C1 D解析:选A由题设知,所以2,f(x)sin,所以f sinsin 1.3(2019石家庄一模)函数f(x)tan的单调递增区间是()A.(kZ)B.(kZ)C.(kZ)D.(kZ)解析:选B由k2xk(kZ)得,x(kZ),所以函数f(x)tan的单调递增区间为(kZ)4函数f(x)sin(2x)的单调增区间是_解析:由f(x)sin(2x)sin 2x,2k2x2k得kxk(kZ)答案:(kZ)5函数y32cos的最大值为_,此时x_.解析:函数y32cos的最大值为325,此时x2k,即x2k(kZ)答案:52k(kZ)二保高考,全练题型做到高考达标1若函数f(x)cos 2x,则f(x)的一个递增区间为()A.B.C. D.解析:选B由f(x)cos 2x知递增区间为,kZ,故只有B项满足2(2019河北五校联考)下列函数最小正周期为且图象关于直线x对称的函数是()Ay2sin By2sinCy2sin Dy2sin解析:选B由函数的最小正周期为,可排除C.由函数图象关于直线x对称知,该直线过函数图象的最高点或最低点,对于A,因为sinsin 0,所以选项A不正确对于D,sinsin,所以选项D不正确对于B,sinsin 1,所以选项B正确3已知函数f(x)2sin(2x)(|), 若f2,则f(x)的一个单调递增区间可以是()A. B.C. D.解析:选Df 2,2sin2,sin1.又|0)的图象的相邻两条对称轴之间的距离为,且该函数图象关于点(x0,0)成中心对称,x0,则x0()A. B.C. D.解析:选A由题意得,T,2.又2x0k(kZ),x0(kZ),而x0,所以x0.5若函数f(x)sin(x)在区间上是单调减函数,且函数值从1减少到1,则f ()A. B.C. D1解析:选C由题意得函数f(x)的周期T2,所以2,此时f(x)sin(2x),将点代入上式得sin1,所以,所以f(x)sin,于是f sincos.6已知函数f(x)2sin(x),对于任意x都有f f ,则f 的值为_解析:f f ,x是函数f(x)2sin(x)的一条对称轴f 2.答案:2或27函数ytan的图象与x轴交点的坐标是_解析:由2xk(kZ)得,x(kZ)函数ytan的图象与x轴交点的坐标是,kZ.答案:,kZ8已知x(0,关于x的方程2 sina有两个不同的实数解,则实数a的取值范围为_解析:令y12sin,x(0,y2a,作出y1的图象如图所示若2sina在(0,上有两个不同的实数解,则y1与y2应有两个不同的交点,所以a2.答案:(,2)9已知f(x)sin.(1)求函数f(x)图象的对称轴方程;(2)求f(x)的单调增区间;(3)当x时,求函数f(x)的最大值和最小值解:(1)f(x)sin,令2xk,kZ,则x,kZ.函数f(x)图象的对称轴方程是x,kZ.(2)令2k2x2k,kZ,则kxk,kZ.故f(x)的单调增区间为,kZ.(3)当x时,2x,1sin,f(x)1,当x时,函数f(x)的最大值为1,最小值为.10已知函数f(x)sin(x)的最小正周期为.(1)求当f(x)为偶函数时的值;(2)若f(x)的图象过点,求f(x)的单调递增区间解:f(x)的最小正周期为,则T,2.f(x)sin(2x)(1)当f(x)为偶函数时,f(x)f(x)sin(2x)sin(2x),将上式展开整理得sin 2xcos 0,由已知上式对xR都成立,cos 0,0,.(2)f(x)的图象过点时,sin,即sin.又0,0时,a33,b5.当a0,0),振幅周期频率相位初相ATfx2.用五点法画yAsin(x)一个周期内的简图用五点法画yAsin(x)一个周期内的简图时,要找五个关键点,如下表所示:xx02yAsin(x)0A0A03.由函数ysin x的图象变换得到yAsin(x)(A0,0)的图象的两种方法小题体验1若函数ysin(x)(0)的部分图象如图,则()A5B4C3 D2答案:B2(教材习题改编)函数ysin的振幅为_,周期为_,初相为_答案:43用五点法作函数ysin在一个周期内的图象时,主要确定的五个点是_、_、_、_、_.答案:1函数图象变换要明确,要弄清楚是平移哪个函数的图象,得到哪个函数的图象;2要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;3由yAsin x的图象得到yAsin(x)的图象时,需平移的单位数应为,而不是|.小题纠偏1把ysin x的图象上点的横坐标变为原来的2倍得到ysin x的图象,则的值为()A1B4C. D2答案:C2要得到函数ysin 2x的图象,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论