




文档简介
1 量子力学课后习题详解 第一章量子理论基础 11 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长 m 与温度 T 成反比,即 m T=b(常量) ; 并近似计算 b 的数值,准确到二位有效数字。 解根据普朗克的黑体辐射公式 dv e c hv d kT hv vv 1 18 3 3 = ,(1) 以及cv=,(2) ddv vv =,(3) 有 , 1 18 )( )( 5 = = = = kT hc v v e hc c d c d d dv 这里的 的物理意义是黑体内波长介于与+d之间的辐射能量密度。 本题关注的是取何值时, 取得极大值,因此,就得要求 对的一 阶导数为零, 由此可求得相应的的值, 记作 m 。 但要注意的是, 还需要验证 对的二阶导数在 m 处的取值是否小于零,如果小于零,那么前面求得的 m 就 是要求的,具体如下: 0 1 1 5 1 18 6 = + = kT hc kT hc e kT hc e hc 2 0 1 1 5= + kT hc e kT hc kT hc e kT hc = )1(5 如果令 x= kT hc ,则上述方程为 xe x = )1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的; 另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此 解正是所要求的,这样则有 xk hc T m = 把 x 以及三个物理常量代入到上式便知 KmT m = 3 109 . 2 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰 值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定 温度的高低。 12 在 0K 附近,钠的价电子能量约为 3eV,求其德布罗意波长。 解根据德布罗意波粒二象性的关系,可知 E=hv, h P= 如果所考虑的粒子是非相对论性的电子( 2 cE e 由于(1)、(3)方程中,由于=)(xU,要等式成立,必须 0)( 1 =x 0)( 2 =x 即粒子不能运动到势阱以外的地方去。 方程(2)可变为0)( 2)( 2 22 2 2 =+x mE dx xd 令 2 2 2 mE k=,得 0)( )( 2 2 2 2 2 =+xk dx xd 其解为kxBkxAxcossin)( 2 += 根据波函数的标准条件确定系数 A,B,由连续性条件,得 )0()0( 12 = )()( 32 aa= 0=B 0sin=kaA ), 3 , 2 , 1( 0sin 0 = = nnka ka A x a n Ax sin)( 2 = 11 由归一化条件 1)( 2 = dxx 得1sin 0 22 = a xdx a n A 由 mn a b a xdx a n x a m = 2 sinsin x a n a x a A sin 2 )( 2 2 = = 2 2 2 mE k= ), 3 , 2 , 1( 2 2 2 22 =nn ma En 可见 E 是量子化的。 对应于 n E的归一化的定态波函数为 = ax axU xU , 0 , 0 )( 0 运动,求束缚态( 0 0UE ,求: (1)粒子动量的几率分布函数; (2)粒子的平均动量。 解:(1)先求归一化常数,由 = = = = = = = 0 0 0 0 2 2 2 22 2 2 22 2 2 2 2 2 2 2 ) ) ) )( ( ( (1 1 1 1dxdxdxdxe e e ex x x xA A A Adxdxdxdxx x x x x x x x 2 2 2 2 3 3 3 3 4 4 4 4 1 1 1 1 A A A A = = = = 2 2 2 2/ / / /3 3 3 3 2 2 2 2 = = = =A A A A x x x x xexexexex x x x 2 2 2 22 2 2 2/ / / /3 3 3 3 2 2 2 2) ) ) )( ( ( ( = = = =) ) ) )0 0 0 0( ( ( ( x x x x 0 0 0 0) ) ) )( ( ( (= = = =x x x x ) ) ) )0 0 0 0( ( ( ( U U U U,求电子在均匀场外电场作用下穿过金属表面的透射系数。 解:设电场强度为 ,方向沿轴负向,则总势能为 ) ) ) )0 0 0 0( ( ( ( ) ) ) )( ( ( ( = = = =x x x xx x x xe e e ex x x xV V V V , 0 0 0 0 V V V V 0 0 0 0 )()( = = = =x x x xx x x xe e e eU U U Ux x x x 势能曲线如图所示。则透射系数为 ) ) ) ) ( ( ( (2 2 2 2 2 2 2 2 expexpexpexp 1 1 1 1 2 2 2 2 0 0 0 0 x x x x x x x x dxdxdxdxE E E Ex x x xe e e eU U U UD D D D 式中E E E E为电子能量。0 0 0 0 1 1 1 1= = = = x x x x, 2 2 2 2 x x x x由下式确定 0 0 0 0) ) ) ) ( ( ( (2 2 2 2 0 0 0 0 = = = = = = = =E E E Ex x x xe e e eU U U Up p p p e e e e E E E EU U U U x x x x = = = = 0 0 0 0 2 2 2 2 令 2 2 2 20 0 0 0 sinsinsinsin e e e e E E E EU U U U x x x x = = = =,则有 45 ) ) ) )( ( ( (2 2 2 2 3 3 3 3 2 2 2 2 ) ) ) ) 3 3 3 3 coscoscoscos ( ( ( ( ) ) ) )( ( ( (2 2 2 22 2 2 2 sinsinsinsin2 2 2 2) ) ) )( ( ( (2 2 2 2) ) ) ) ( ( ( (2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 20 0 0 0 0 0 0 00 0 0 0 1 1 1 1 2 2 2 2 E E E EU U U U e e e e E E E EU U U U E E E EU U U U e e e e E E E EU U U U d d d d e e e e E E E EU U U U E E E EU U U UdxdxdxdxE E E Ex x x xe e e eU U U U x x x x x x x x = = = = = = = = = = = = 透射系数 ) ) ) )( ( ( (2 2 2 2 3 3 3 3 2 2 2 2 expexpexpexp 0 0 0 0 0 0 0 0 E E E EU U U U e e e e E E E EU U U U D D D D 5指出下列算符哪个是线性的,说明其理由。 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 dxdxdxdx d d d d x x x x; 2 2 2 2 ; = = = = n n n n K K K K1 1 1 1 解: 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 dxdxdxdx d d d d x x x x是线性算符 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 11 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 21 1 1 11 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 44 4 4 4 ) ) ) )( ( ( (4 4 4 4) ) ) )( ( ( (4 4 4 4) ) ) )( ( ( (4 4 4 4 u u u u dxdxdxdx d d d d x x x xc c c cu u u u dxdxdxdx d d d d x x x xc c c c u u u uc c c c dxdxdxdx d d d d x x x xu u u uc c c c dxdxdxdx d d d d x x x xu u u uc c c cu u u uc c c c dxdxdxdx d d d d x x x x + + + + = = = = + + + += = = =+ + + + 2 2 2 2 不是线性算符 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 1 1 1 11 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 21 1 1 12 2 2 21 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 22 2 2 21 1 1 11 1 1 1 2 2 2 2 u u u uc c c cu u u uc c c c u u u uc c c cu u u uu u u uc c c cc c c cu u u uc c c cu u u uc c c cu u u uc c c c + + + + + + + + + + += = = =+ + + + = = = = n n n n K K K K1 1 1 1 是线性算符 = = = = = = = = = = = = = = = = + + + += = = =+ + + += = = =+ + + + N N N N K K K K N N N N K K K K N N N N K K K K N N N N K K K K n n n n K K K K u u u uc c c cu u u uc c c cu u u uc c c cu u u uc c c cu u u uc c c cu u u uc c c c 1 1 1 1 2 2 2 22 2 2 2 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 2 2 2 22 2 2 2 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 2 2 2 22 2 2 21 1 1 11 1 1 1 6指出下列算符哪个是厄米算符,说明其理由。 2 2 2 2 2 2 2 2 4 4 4 4 dxdxdxdx d d d d dxdxdxdx d d d d i i i i dxdxdxdx d d d d , 46 不是厄米算符不是厄米算符 ,当当 解:解: dxdxdxdx d d d d dxdxdxdx dxdxdxdx d d d d dxdxdxdx dxdxdxdx d d d d dxdxdxdx dxdxdxdx d d d d dxdxdxdx dxdxdxdx d d d d x x x x dxdxdxdx dxdxdxdx d d d d dxdxdxdx dxdxdxdx d d d d * * * *) ) ) )( ( ( ( * * * *) ) ) )( ( ( ( * * * * * * * * 0 0 0 00 0 0 0 * * * * * * * * * * * * - - - - = = = = = = = = = = = = 是厄米算符是厄米算符 dxdxdxdx d d d d i i i i dxdxdxdx dxdxdxdx d d d d i i i idxdxdxdx dxdxdxdx d d d d i i i i dxdxdxdx dxdxdxdx d d d d i i i ii i i idxdxdxdx dxdxdxdx d d d d i i i i = = = = = = = = = = = = * * * *) ) ) )( ( ( ( * * * *) ) ) )( ( ( ( * * * * * * * * * * * * - - - - 是厄米算符是厄米算符 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 - - - - 2 2 2 2 2 2 2 2 4 4 4 4 * * * *) ) ) )4 4 4 4( ( ( ( * * * *4 4 4 4 * * * * 4 4 4 4 * * * * 4 4 4 4 * * * * 4 4 4 4 * * * * 4 4 4 4 * * * *4 4 4 4 4 4 4 4* * * * dxdxdxdx d d d d dxdxdxdx dxdxdxdx d d d d dxdxdxdx dxdxdxdx d d d d dxdxdxdx dxdxdxdx d d d d dxdxdxdx d d d d dxdxdxdx dxdxdxdx d d d d dxdxdxdx d d d d dxdxdxdx dxdxdxdx d d d d dxdxdxdx d d d d dxdxdxdx d d d d dxdxdxdx dxdxdxdx d d d d = = = = = = = = + + + += = = = = = = = = = = = 7、下列函数哪些是算符 2 2 2 2 2 2 2 2 dxdxdxdx d d d d 的本征函数,其本征值是什么? 2 2 2 2 x x x x, x x x x e e e e,x x x xsinsinsinsin ,x x x xcoscoscoscos3 3 3 3,x x x xx x x xcoscoscoscossinsinsinsin+ + + + 解:2 2 2 2) ) ) )( ( ( ( 2 2 2 2 2 2 2 2 2 2 2 2 = = = =x x x x dxdxdxdx d d d d 2 2 2 2 x x x x不是 2 2 2 2 2 2 2 2 dxdxdxdx d d d d 的本征函数。 x x x xx x x x e e e ee e e e dxdxdxdx d d d d = = = = 2 2 2 2 2 2 2 2 x x x x e e e e不是 2 2 2 2 2 2 2 2 dxdxdxdx d d d d 的本征函数,其对应的本征值为 1。 47 x x x xx x x x dxdxdxdx d d d d x x x x dxdxdxdx d d d d sinsinsinsin) ) ) )(cos(cos(cos(cos) ) ) )(sin(sin(sin(sin 2 2 2 2 2 2 2 2 = = = = = = = 可见,x x x xsinsinsinsin是 2 2 2 2 2 2 2 2 dxdxdxdx d d d d 的本征函数,其对应的本征值为1。 ) ) ) )coscoscoscos3 3 3 3( ( ( (coscoscoscos3 3 3 3) ) ) )sinsinsinsin3 3 3 3( ( ( () ) ) )coscoscoscos3 3 3 3( ( ( ( 2 2 2 2 2 2 2 2 x x x xx x x xx x x x dxdxdxdx d d d d x x x x dxdxdxdx d d d d = = = = = = = = x x x xcoscoscoscos3 3 3 3是 2 2 2 2 2 2 2 2 dxdxdxdx d d d d 的本征函数,其对应的本征值为1。 ) ) ) )coscoscoscos(sin(sin(sin(sin coscoscoscossinsinsinsinsinsinsinsin(cos(cos(cos(cos) ) ) )coscoscoscos(sin(sin(sin(sin 2 2 2 2 2 2 2 2 x x x xx x x x x x x xx x x xx x x xx x x x dxdxdxdx d d d d x x x xx x x x dxdxdxdx d d d d + + + + = = = = = = = = = = = =+ + + +) x x x xx x x xcoscoscoscossinsinsinsin+ + + +是 2 2 2 2 2 2 2 2 dxdxdxdx d d d d 的本征函数,其对应的本征值为1。 8、试求算符 dxdxdxdx d d d d ie ie ie ieF F F F ixixixix = = = = 的本征函数。 解:F F F F 的本征方程为 F F F FF F F F= = = = c c c c dxdxdxdx d d d d FeFeFeFe dxdxdxdx d d d d FeFeFeFed d d d dxdxdxdx d d d d FeFeFeFed d d ddxdxdxdxiFeiFeiFeiFe d d d d F F F F dxdxdxdx d d d d ie ie ie ie ixixixix ixixixixixixixixixixixix ixixixix ln ln ln lnln ln ln ln ) ) ) )( ( ( () ) ) )( ( ( ( + + + + = = = = = = = = = = = = = = = = = = = 即即 ix ix ix ix FeFeFeFe cececece = = = = (F F F FF F F F是是 的本征值) 9、如果把坐标原点取在一维无限深势阱的中心,求阱中粒子的波函数和能级的 表达式。 解: = = = = 2 2 2 2 , , , , 2 2 2 2 , , , , 0 0 0 0 ) ) ) )( ( ( ( a a a a x x x x a a a a x x x x x x x xU U U U 48 方程(分区域) : : = = = =) ) ) )( ( ( (x x x xU U U U0 0 0 0) ) ) )( ( ( (= = = =x x x x I I I I ) ) ) ) 2 2 2 2 ( ( ( ( a a a a x x x x : = = = =) ) ) )( ( ( (x x x xU U U U0 0 0 0) ) ) )( ( ( (= = = =x x x x IIIIIIIIIIII ) ) ) ) 2 2 2 2 ( ( ( ( a a a a x x x x : II II II II II II II II E E E E dxdxdxdx d d d d = = = = 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 0 0 0 0 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 = = = =+ + + + II II II II II II II II E E E E dxdxdxdx d d d d 令 2 2 2 2 2 2 2 2 2 2 2 2 E E E E k k k k = = = = 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 = = = =+ + + + II II II II II II II II k k k k dxdxdxdx d d d d ) ) ) )sin(sin(sin(sin( + + + += = = =kxkxkxkxA A A A II II II II 标准条件: = = = = = = = = ) ) ) ) 2 2 2 2 ( ( ( () ) ) ) 2 2 2 2 ( ( ( ( ) ) ) ) 2 2 2 2 ( ( ( () ) ) ) 2 2 2 2 ( ( ( ( a a a aa a a a a a a aa a a a IIIIIIIIIIIIII II II II II II II III I I I 0 0 0 0) ) ) )sin(sin(sin(sin(= = = =+ + + + kxkxkxkxA A A A 0 0 0 0 A A A A 0 0 0 0) ) ) )sin(sin(sin(sin(= = = =+ + + + kxkxkxkx 取0 0 0 0 2 2 2 2 = = = = a a a a k k k k ,即 2 2 2 2 a a a a k k k k= = = = ) ) ) ) 2 2 2 2 ( ( ( (sinsinsinsin) ) ) )( ( ( ( a a a a x x x xk k k kA A A Ax x x x II II II II + + + += = = = 0 0 0 0sinsinsinsin= = = =kakakakaA A A A 0 0 0 0sinsinsinsin = = = =kakakaka n n n nkakakaka= = = =) ) ) ) , , , ,2 2 2 2 , , , ,1 1 1 1( ( ( (= = = =n n n n n n n n a a a a k k k k = = = = 49 粒子的波函数为 + + + + = = = = 2 2 2 2 , , , , 0 0 0 0 2 2 2 2 ), ), ), ), 2 2 2 2 ( ( ( (sinsinsinsin ) ) ) )( ( ( ( a a a a x x x x a a a a x x x x a a a a x x x x a a a a n n n n A A A A x x x x 粒子的能级为 a a a a k k k kn n n n k k k kE E E E 2 2 2 22 2 2 2 2 2 2 22 2 2 22 2 2 2 2 2 2 2 2 2 2 2 = = = = = = = ) ) ) ) , , , , 3 3 3 3 , , , , 2 2 2 2 , , , , 1 1 1 1( ( ( (= = = =n n n n 由归一化条件,得 + + + += = = = = = = 2 2 2 2/ / / / 2 2 2 2/ / / / 2 2 2 22 2 2 2 2 2 2 2 ) ) ) ) 2 2 2 2 ( ( ( (sinsinsinsin) ) ) )( ( ( (1 1 1 1 a a a a a a a a dxdxdxdx a a a a x x x x a a a a n n n n A A A Ad d d dx x x x + + + + = = = = 2 2 2 2/ / / / 2 2 2 2/ / / / 2 2 2 2 ) ) ) ) 2 2 2 2 ( ( ( ( 2 2 2 2 coscoscoscos1 1 1 1 2 2 2 2 1 1 1 1 a a a a a a a a dxdxdxdx a a a a x x x x a a a a n n n n A A A A + + + + = = = = 2 2 2 2/ / / / 2 2 2 2/ / / / 2 2 2 22 2 2 2 ) ) ) ) 2 2 2 2 ( ( ( ( 2 2 2 2 coscoscoscos 2 2 2 2 a a a a a a a a dxdxdxdx a a a a x x x x a a a a n n n n A A A A a a a a A A A A 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 ) ) ) ) 2 2 2 2 ( ( ( ( 2 2 2 2 sinsinsinsin 2 2 2 22 2 2 2 a a a a a a a a a a a a x x x x a a a a n n n n n n n n a a a a A A A AA A A A a a a a + + + + = = = = 2 2 2 2 2 2 2 2 A A A A a a a a = = = = a a a a A A A A 2 2 2 2 = = = = 粒子的归一化波函数为 + + + + = = = = 2 2 2 2 , , , , 0 0 0 0 2 2 2 2 ), ), ), ), 2 2 2 2 ( ( ( (sinsinsinsin 2 2 2 2 ) ) ) )( ( ( ( a a a a x x x x a a a a x x x x a a a a x x x x a a a a n n n n a a a a x x x x 10、证明:处于 1s、2p 和 3d 态的氢原子中的电子,当它处于距原子核的距离分 别为 0 0 0 00 0 0 00 0 0 0 9 9 9 94 4 4 4a a a aa a a aa a a a、的球壳处的几率最( 0 0 0 0 a a a a为第一玻尔轨道半径) 。 证:drdrdrdrr r r rR R R Rdrdrdrdrr r r rs s s s 2 2 2 2 2 2 2 2 1010101010101010 ) ) ) )( ( ( ( : : : :1 1 1 1= = = = drdrdrdrr r r re e e e a a a a a a a ar r r r 2 2 2 2 / / / /2 2 2 2 3 3 3 3 0 0 0 0 0 0 0 0 4 4 4 4) ) ) ) 1 1 1 1 ( ( ( ( = = = = 50 0 0 0 0 / / / /2 2 2 2 2 2 2 23 3 3 3 0 0 0 0 10101010 4 4 4 4) ) ) ) 1 1 1 1 ( ( ( () ) ) )( ( ( ( a a a ar r r r e e e er r r r a a a a r r r r = = = = 0 0 0 0 / / / /2 2 2 22 2 2 2 0 0 0 0 3 3 3 3 0 0 0 0 10101010 ) ) ) ) 2 2 2 2 2 2 2 2( ( ( () ) ) ) 1 1 1 1 ( ( ( (4 4 4 4 a a a ar r r r e e e er r r r a a a a r r r r a a a adrdrdrdr d d d d = = = = 0 0 0 0 / / / /2 2 2 2 0 0 0 0 3 3 3 3 0 0 0 0 ) ) ) ) 1 1 1 1 1 1 1 1( ( ( () ) ) ) 1 1 1 1 ( ( ( (8 8 8 8 a a a ar r r r rere rerer r r r a a a aa a a a = = = = 令0 0 0 0 10101010 = = = = drdrdrdr d d d d ,则得 0 0 0 0 11111111 = = = =r r r r 0 0 0 011111111 a a a ar r r r= = = = ) ) ) )1 1 1 1( ( ( () ) ) ) 2 2 2 2 1 1 1 1( ( ( () ) ) ) 1 1 1 1 ( ( ( (8 8 8 8 0 0 0 0 / / / /2 2 2 2 0 0 0 00 0 0 00 0 0 0 3 3 3 3 0 0 0 0 2 2 2 2 10101010 2 2 2 2 a a a ar r r r e e e e a a a a r r r r a a a a r r r r r r r r a a a aa a a adrdrdrdr d d d d = = = = ) ) ) ) 2 2 2 24 4 4 4 1 1 1 1( ( ( () ) ) ) 1 1 1 1 ( ( ( (8 8 8 8 0 0 0 0 / / / /2 2 2 2 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 3 3 3 3 0 0 0 0 a a a ar r r r e e e e a a a a r r r r a a a a r r r r a a a a + + + + = = = = 0 0 0 0 0 0 0 0 2 2 2 2 10101010 2 2 2 2 11111111 = = = =r r r r drdrdrdr d d d d 0 0 0 0 11111111= = = = r r r r为几率最小处。 0 0 0 0 0 0 0 011111111 2 2 2 2 10101010 2 2 2 2 drdrdrdr d d d d 0 0 0 0= = = =r r r r为几率最小位置。 0 0 0 0 3 3 3 3 2 2 2 2 6 6 6 6 7 7 7 7 0 0 0 0 2 2 2 2 3232323232323232 98415984159841598415 8 8 8 8 ) ) ) )( ( ( ( : : : :3 3 3 3 a a a a r r r r e e e er r r r a a a a R R R Rr r r rd d d d = = = = = = = 0 0 0 0 3 3 3 3 2 2 2 2 5 5 5 5 0 0 0 0 7 7 7 7 0 0 0 0 32323232 ) ) ) ) 3 3 3 3 2 2 2 2 5 5 5 5( ( ( ( 98415984159841598415 8 8 8 8 a a a a r r r r e e e er r r r a a a a r r r r a a a adrdrdrdr d d d d = = = = 令0 0 0 0 32323232 = = = = drdrdrdr d d d d ,得 , , , , 0 0 0 0 31313131 = = = =r r r r 0 0 0 032323232 9 9 9 9a a a ar r r r= = = = 同理可知0 0 0 0 31313131 = = = =r r r r为几率最小处。 0 0 0 032323232 9 9 9 9a a a ar r r r= = = =为几率最大处。 11、求一维谐振子处在第一激发态时几率最大的位置。 解: 2 2 2 22 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 ) ) ) )( ( ( ( x x x x xexexexex x x x = = = = 2 2 2 22 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 1 1 1 11 1 1 1 2 2 2 2 ) ) ) )( ( ( () ) ) )( ( ( ( x x x x e e e ex x x xx x x xx x x x = = = = = = = 2 2 2 22 2 2 2 ) ) ) )( ( ( ( 4 4 4 4 3 3 3 32 2 2 2 3 3 3 3 1 1 1 1x x x x e e e ex x x xx x x x dxdxdxdx d d d d = = = = 2 2 2 22 2 2 2 ) ) ) )1 1 1 1( ( ( ( 4 4 4 4 2 2 2 22 2 2 2 3 3 3 3 x x x x xexexexex x x x = = = = 2 2 2 22 2 2 2 ) ) ) )2 2 2 25 5 5 51 1 1 1( ( ( ( 4 4 4 4 4 4 4 44 4 4 42 2 2 22 2 2 2 3 3 3 3 2 2 2 2 1 1 1 1 2 2 2 2 x x x x e e e ex x x xx x x x dxdxdxdx d d d d + + + + = = = = 令0 0 0 0 1 1 1 1 = = = = dxdxdxdx d d d d ,得 52 0 0 0 0 1 1 1 1= = = = x x x x, 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1 1 1 x x x xx x x x = = = = = = = = = = = = 0 0 0 0 0 0 0 0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年度计算机四级题库检测试题打印含完整答案详解【网校专用】
- 个人歌唱活动策划与执行要点
- 物料能量衡算精要
- 酒店微笑问好服务培训纲要
- 2026届山东省曲阜市石门山镇中学九年级化学第一学期期中学业水平测试模拟试题含解析
- 2026届山东省德州市六校化学九上期末统考模拟试题含解析
- 2026届山东滨州阳信县九年级英语第一学期期末教学质量检测模拟试题含解析
- 2026届河南省驻马店九上化学期中预测试题含解析
- 河南省南阳市宛城区等2地2025-2026学年高二上学期开学英语试题(含答案)
- 2025年腔镜技能大赛试题及答案
- JT-T-795-2011事故汽车修复技术规范
- 宁夏红墩子煤业有限公司红二煤矿环评上报版
- (高清版)DZT 0437-2023 环境地质调查规范(1:50000)
- 《压力焊方法》课件
- 2024信息安全意识培训ppt课件完整版含内容
- JGT366-2012 外墙保温用锚栓
- 《动物比较生理学》课件
- 火龙罐综合灸疗法
- 化学锚栓承载力计算
- 肺部感染性疾病课件
- 医院健康体检表
评论
0/150
提交评论