(好资料)08级高数(下)试题及答案_第1页
(好资料)08级高数(下)试题及答案_第2页
(好资料)08级高数(下)试题及答案_第3页
(好资料)08级高数(下)试题及答案_第4页
(好资料)08级高数(下)试题及答案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

南昌大学 20082009学年第二学期期末考试试卷一、 填空题(每空 3 分,共 15 分) 1. 已知向量,则以,为边的平行四边形的面积等于.2. 曲面在点处的切平面方程是.3. 交换积分次序.4. 对于级数(a0),当a满足条件时收敛.5. 函数展开成的幂级数为.二、 单项选择题 (每小题3分,共15分)1. 平面的位置是 ( )(A)通过轴 (B)通过轴(C)垂直于轴 (D)平行于平面2. 函数在点处具有偏导数,,是函数在该点可微分的 ( )(A)充要条件 (B)充分但非必要条件(C)必要但非充分条件 (D)既非充分又非必要条件3. 设,则( )(A) (B)(C) (D)4. 若级数在处收敛,则此级数在处( )(A)敛散性不确定 (B)发散 (C)条件收敛 (D)绝对收敛5. 微分方程的通解是( )(A) (B)(C) (D)三、(本题满分8分)设平面通过点,而且通过直线,求该平面方程四、(本题满分8分)设,其中具有二阶连续偏导数,试求和五、(本题满分8分)计算三重积分,其中六、(本题满分8分)计算对弧长的曲线积分,其中L是圆周在第一象限的部分七、(本题满分9分)计算曲面积分,其中是柱面与平面和所围成的边界曲面外侧八、(本题满分9分)求幂级数的收敛域及和函数九、(本题满分9分)求微分方程的通解十、(本题满分11分)设是上半平面内的有向分段光滑曲线,其起点为,终点为,记1证明曲线积分与路径无关;2求的值南昌大学 20082009学年第二学期期末考试试卷及答案一、 填空题(每空 3 分,共 15 分) 1. 已知向量,则以,为边的平行四边形的面积等于.2. 曲面在点处的切平面方程是.3. 交换积分次序.4. 对于级数(a0),当a满足条件时收敛.5. 函数展开成的幂级数为.二、 单项选择题 (每小题3分,共15分)1. 平面的位置是 ( )(A)通过轴 (B)通过轴(C)垂直于轴 (D)平行于平面2. 函数在点处具有偏导数,,是函数在该点可微分的 ( )(A)充要条件 (B)充分但非必要条件(C)必要但非充分条件 (D)既非充分又非必要条件3. 设,则( )(A) (B)(C) (D)4. 若级数在处收敛,则此级数在处( )(A)敛散性不确定 (B)发散 (C)条件收敛 (D)绝对收敛5. 微分方程的通解是( )(A) (B)(C) (D)三、(本题满分8分)设平面通过点,而且通过直线,求该平面方程解: 由于平面通过点及直线上的点, 因而向量平行于该平面。该平面的法向量为: 则平面方程为: 或: 即: 四、(本题满分8分) 设,其中具有二阶连续偏导数,试求和解: , 五、(本题满分8分)计算三重积分,其中解: 六、(本题满分8分)计算对弧长的曲线积分,其中L是圆周在第一象限的部分解法一: 解法二: (的弧长) 解法三: 令, 七、(本题满分9分)计算曲面积分,其中是柱面与平面和所围成的边界曲面外侧解: , 由高斯公式: 八、(本题满分9分)求幂级数的收敛域及和函数解: 收敛半径: 易判断当时,原级数发散。 于是收敛域为 九、(本题满分9分)求微分方程的通解解:特征方程为:特征根为:,的通解为:设原方程的一个特解为:, 原方程的一个特解为:故原方程的一个通解为: 十、(本题满分11分)设是上半平面内的有向分段光滑曲线,其起点为,终点为,记1证明曲线积分与路径无关;2求的值证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论