




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2008年全国硕士研究生入学统一考试数学一试题一、选择题:18小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数,则的零点个数( )01 23解:.分析:,恒大于0,所以在上是单调递增的.又因为,根据其单调性可知只有一个零点.(2)函数在点处的梯度等于( ) 解;.分析:由 所以(3)在下列微分方程中,以(为任意常数)为通解的是( ).解:.分析;由可知其特征根为.故对应的特征方程为 所以所求微分方程为, 选.(4)设函数在内单调有界,为数列,下列命题正确的是( )若收敛,则收敛. 若单调,则收敛.若收敛,则收敛.若单调,则收敛.解:分析:若单调,则由在内单调有界知,单调有界,因此收敛,应选.(5)设为阶非零矩阵,为阶单位矩阵. 若,则( )不可逆,不可逆.不可逆,可逆.可逆,可逆. 可逆,不可逆. 解:选分析:,故均可逆。(6)设为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图,则的正特征值个数为( )0.1. 2.3. 解:选分析:此二次曲面为旋转双叶双曲面,此曲面的标准方程为,故的正特征值个数为1。(7)设随机变量独立同分布且分布函数为,则分布函数为( ) . . . . 解:选分析;(8)设随机变量,且相关系数,则( ) . 解:选分析:用排除法设,由,知道正相关,得,排除、由,得排除 故选择二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)微分方程满足条件的解是. 解:分析;由所以,又,所以.(10)曲线在点处的切线方程为.解:.分析:设,斜率,在处,所以切线方程为,即(11)已知幂级数在处收敛,在处发散,则幂级数的收敛域为.解:.分析:由题意知的收敛域为,则的收敛域为.所以的收敛域为.(12)设曲面是的上侧,则.解:分析;(13)设为2阶矩阵,为线性无关的2维列向量,则的非零特征值为.解:1分析:记可逆,故与有相同的特征值,故非零的特征值为1。(14)设随机变量服从参数为1的泊松分布,则.解:分析;因为 ,所以 ,服从参数为1的泊松分布,所以 三、解答题:1523小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限解: (16)(本题满分10分) 计算曲线积分,其中是曲线上从点到点的一段.解:(17)(本题满分10分)已知曲线,求曲线距离面最远的点和最近的点.解:得: 得:.(18)(本题满分10分)函数在连续,证明在可导,且.证 :设获得增量,其绝对值足够小,使得,则(如图,图中)在处的函数值为: 由此得函数的增量再应用积分中值定理,即有等式这里,在与之间,把上式两端各除以,得函数增量与自变量的比值 由于假设连续,而时,因此。于是,令对上式两端取极限,左端的极限也应该等于,故的导函数存在,并且 (19)(本题满分10分),用余弦级数展开,并求的和解:由为偶函数,则对所以 取 ,得 所以 (20)(本题满分11分),是三维列向量,为的转置,为的转置(1)证;(2)若线性相关,则.解:为三维列向量,则,线性相关,不妨设,(21)(本题满分11分)设矩阵,现矩阵满足方程,其中,(1)求证(2)为何值,方程组有唯一解,求(3)为何值,方程组有无穷多解,求通解解:方程组有唯一解由,知,又,故。记,由克莱姆法则知,方程组有无穷多解由,有,则,故的同解方程组为,则基础解系为,为任意常数。又,故可取特解为所以的通解为为任意常数。(22)(本题满分11分)设随机变量与相互独立,的概率分布为,的概率密度为,记(1)求(2)求的概率密度解:(1)(2)当时,当时,当时,当时,当时,当时,所以 ,则(23)(本题满分11分)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年湖南省广播电视局下属事业单位真题
- 合作伙伴选择对生产计划的影响
- 戏剧教育对学生心理发展的影响计划
- 营养科饮食管理改进目标计划
- 2024年河南省事业单位招聘笔试真题
- 2024年成都青羊区融媒体中心招聘笔试真题
- 材料力学性能测试时间因素重点基础知识点
- 材料力学与计算机技术重点基础知识点
- 软件设计师职业发展规划试题及答案
- 软件开发中的跨团队协作方法试题及答案
- 2025年智慧城市建设相关知识考试试卷及答案
- 2025年政治考研真题及答案
- 2025年4月自考00522英语国家概况答案及评分参考
- 2025年江西南昌初三一模中考语文试卷试题(含答案详解)
- 2025年吉林省长春市中考一模历史试题(原卷版+解析版)
- 2025人教版三年级下册数学第七单元达标测试卷(含答案)
- 2024年安徽演艺集团有限责任公司招聘笔试真题
- 《宝马汽车营销策略》课件
- 2024年宁夏银川公开招聘社区工作者考试试题答案解析
- 5why培训试题及答案
- 雾化操作流程与注意事项
评论
0/150
提交评论