球的体积和表面积公式并进行具体推导过程.pdf_第1页
球的体积和表面积公式并进行具体推导过程.pdf_第2页
球的体积和表面积公式并进行具体推导过程.pdf_第3页
球的体积和表面积公式并进行具体推导过程.pdf_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13.2 球的球的体积体积和表面积和表面积(1) 教学目的教学目的:使掌握了解球的体积公式的推导过程,能记住球的体积公式,并会用公式 解决问题。 教学重点教学重点:掌握球的体积公式及其应用。 教学难点教学难点:球的体积公式推导是教学的难点。 教学过程教学过程 一、复习提问一、复习提问 柱体、锥体、台体的体积公式分别是什么? 二、新课二、新课 设球的半径为 R,将半径 OAn 等分,过这些分点作平 面把半球切割成 n 层,每一层都是近似于圆柱形状的“小 圆片” ,这些“小圆片”的体积之和就是半球的体积。 由于“小圆片”近似于圆柱形状,所以它的体积也近 似于圆柱的体积。它的高就是“小圆片”的厚度 n R ,底 面就是“小圆片”的下底面。 由勾股定理可得第 i 层(由下向上数) “小圆片”的下底面半径: 22 )1(i n R Rri, (i1,2,3,n) 第 i 层“小圆片”的体积为: V 2 i r n R 2 3 1 1 n i n R , (i1,2,3,n) 半球的体积:V 半径V1V2Vn n R3 1(1 2 2 1 n )()(1 2 2 2 n )1 2 2 ) 1( n n n R3 n 2 222 ) 1(21 n n (注:) 12)(1( 6 1 21 222 nnnn) n R3 n 6 ) 12() 1(1 2 nnn n 2 3 6 ) 12)(1( 1 ( n nn R ) 6 ) 1 2)( 1 1 ( 1 3nn R 当所分的层数不断增加,也就是说,当 n 不断变大时,式越来越接近于半球的 体积,如果 n 无限变大,就能由式推出半径的体积。 事实上,n 增大, n 1 就越来越小,当 n 无限大时, n 1 趋向于 0,这时,有 V半径 3 3 2 R,所以,半径为 R 的球的体积为: V 3 3 4 R 13.2 球的体积和表面积(2) 教学目的教学目的:使掌握了解球的表面积公式的推导过程,能记住球的表面积公式,并会用 公式解决问题。 教学重点教学重点:掌握球的表面积公式及其应用。 教学难点教学难点:球的表面积公式推导是教学的难点。 教学过程教学过程 一、复习提问一、复习提问 柱体、锥体、台体及球的体积的公式是什么? 二、新课二、新课 球的表面积推导方法球的表面积推导方法(设球的半径为 R,利用球的体积公式推导类似方法) (1)分割。把球 O 的表面分成 n 个“小球面片” ,设它们的表面积分别是 S1,S2, Sn,那么球的表面积为:SS1S2Sn 把球心 O 和每一个“小球面片”的顶点连接起来,整个球体被分成 n 个以“小球 面片”为底,球心为顶点的“小锥体” 。例如,球心与第 i 个“小球面片”顶点相连后 就得到一个以点 O 为顶点,以第 i 个“小球面片”为底面的“小锥体” 。这样“小锥体” 的底面是球面的一部分,底面是“曲”的。如果每一个“小球面片”都非常小,那么 “小锥体”的底面几乎是“平”的, (好象地球一样) ,这时,每一个“小锥体”就近 似于棱锥,它们的高近似于球的半径 R。 (2)求近似和。设 n 个“小锥体”的体积分别为 V1,V2,Vn 那么球的体积为:VV1V2Vn 由于“小锥体”近似于棱锥,所以我们用相应棱锥的体积作为“小锥体”体积的 近似值。第近似值。第 i 个“小锥体”对应的棱锥以点个“小锥体”对应的棱锥以点 O 为顶点,以点为顶点,以点 O 与第与第 i 个“小球面片”个“小球面片” 顶点的连线为棱。设它的高为 hi,底面面积为 Si,于是,它的体积为: Vi 3 1 hi Si, (i1,2,,n) 这样就有:Vi 3 1 hi Si, (i1,2,,n) V 3 1 (h1 S1h2 S2 hn Sn) (3)转化为球的表面积。分割得越细密,也就是每一个“小球面片”越小, “小锥体”就越接近于棱锥,如果分 割无限加细,每一个“小球面片”都无限变小,那么 hi (i1,2,,n)就趋向于 R,Si就趋向于 Si,于是,由 可得:V 3 1 RS 又 V 3 3 4 R,所以,有 3 3 4 R 3 1 RS 即: S4R2 例 5、图 1.310 表示一个用鲜花做成的花柱,它的下面是一个直径为 1m,高为 3m 的圆柱形物体,上面是一个半球体,如果每平方米大约需要鲜花 150 朵,那么装饰 这个花柱大约需要多少朵鲜花( 取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论