机器人资料-论文-050-Visual Tracking and Servoing System Design for Circling.pdf_第1页
机器人资料-论文-050-Visual Tracking and Servoing System Design for Circling.pdf_第2页
机器人资料-论文-050-Visual Tracking and Servoing System Design for Circling.pdf_第3页
机器人资料-论文-050-Visual Tracking and Servoing System Design for Circling.pdf_第4页
机器人资料-论文-050-Visual Tracking and Servoing System Design for Circling.pdf_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

visualtrackingandservoingsystemdesignforcircling atargetofanairvehiclesimulatedinvirtualreality cheng-minghuang1,jong-hannjean3,yu-shanchengl,andli-chenfu1,2 departmentofelectricalengineering . departmentofcomputer2scieern departmentofelectricalengineerngi andinformationengineering2 nationaltaiwanuniversitynationaltaiwanuniversityst.johnsandst.marysinstituteoftechnology taipei,taiwan,r.0.c.taipei,taiwan,r.0.c.tamsui,taipei,taiwan,r.0.c. .tw abstract-thispaperpresentsthedevelopmentofavisual trackingandvisualservosystemforareconnoiteringair vehicle.theairvehicleismountedwithacameraplatform underneath.itisproposedtoperformanaerialreconnoitering missionforcontinuouslyviewinganinterestingtarget.the visionsystemiscomposedofahybridvisualtrackingsystem andanimagebasedfuzzylogicvisualservosystem.the designedhybridvisualtrackingsystemcantrackarbitrary- shapedmovingobject.also,thefollowedvisualservosystem istocontroltheairvehiclehoveringthetargetautonomously. theoverallsystemissimulatedandexperimentedinavirtual realityenvironmenttovalidatetheresearchwork. indexterms-visualtracking,visualservo. i.introduction apparently,unmannedairvehicle(uav)hasgained increasingattentionrecently.itissmallandsafetocarryout variousdangerousmissionswithoutapilotaboard.theuav canbecontrolledbyoperatorsremotelyorcanperformsome specificfunctions1-3autonomously,suchasmotion planning,navigationcontrol,sensorcontrol,dataanalysis, communication,etc.theimagingsensorislikelytobethe mostcommonsensingdevicemountedonuav.itis generallydevisedfortwopurposes,namely,flyingguidance andinformationacquisition.thecameraplatformisjustlike theeyeoftheairvehiclesothattheflyingpathoftheair vehiclecanbeproperlyspecifiedortheautopilotnavigation 4,5canbeappliedthroughuseofsomevisualservo mechanism.theotheraspectofthistaskdomainisaboutthe imageprocessingandcomputervision,suchasfeature identification,visualtracking,datacompression,andvisual representation,visualservoing,etc6,7. inthispaper,wedesignanintegratedvisionsystem applyingvisualtrackingandthevisualservoingtechniquefor navigationoftheairvehicle.thevisualtrackingsub-systemis designedtoextracttheinterestingtargetpositionfromthe capturedimagesequence.weadoptthearbitrary-shaped visualtrackingmethodologyproposedinourrecentwork8. thistrackingmethodcombinesthecontourmatchingand templatematchingasahybridsearchfortheunderlying trackingalgorithm.thetrackingresultisthenfedbacktothe autopilotoftheairvehiclesothatthevisualservosub-system canberealized.sincetherealdynamicsoftheairvehicleis verycomplex,wewillreduceitfirstandapplythehumanlike fuzzylogiccontroltotheautopilot.finally,thedeveloped imagebasedfuzzylogicnavigationcontrolleracquires appealingperformanceandconsiderablerobustnessapparent fromseveralsimulations. inourautopilotcontroldesign,therearetwoscenarios. first,wefixthecameraplatformunderneaththeairvehicle, withoutanydegreeoffreedom,toviewtheground straightdown.next,werelaxthisrestrictionsothatthecamera platformcanhave2dof(pitchandyaw)movement,to functionlikethemilitarylight-of-sight(los)whichcanlock onthetarget.however,inbothscenarios,theuavalways needstoadjustitsposetocompletetheautonomous reconnaissance. ontheotherhand,virtualreality(vr)isakindof advancedtechnologywhichfacilitatesscientistsandengineers tosimulateandtoverifytheirworksinaninteractive applicationenvironment.uavexperimentsposereally challengingenvironmentsforvariousrelatedconduct researches16.owingtothiscondition,beforeperforming thatrealexperiment,weproposeanexperimentwhich integratesthevisualtrackingalgorithmandthevr presentationtechniquesothatauavequippedwitha vision systemcanbetestedinlab. thispaperisorganizedasfollows.thehybridvisual trackingalgorithmisdescribedinsection2,wherean arbitrary-shapedvisualtrackingalgorithmforextractionthe positionoftheinterestingtargetisprovided.insection3the visionbasedfuzzylogicautopilotcontrollerisproposedfor thevisualservosub-systemoftheairvehicle.section4and section5presentsseveralnumericalsimulationsandthe virtualrealityexperimenttovalidatethedevelopedsystem. finally,conclusionisgiveninsection6. ii.visualtrackingsub-system beforedesigningtheaerialhoveringnavigationcontrol, wehavetogettheinterestingtargetpositionfromthe camerassensedimage.inthissection,webrieflypresentthe hybridtrackingalgorithm8,whichcantrackanarbitrary- shapedobjectin3dspace.weutilizeittofindoutthetarget andtoperformvisualtrackingduringtheflying. a.contourmatching differentfromthetraditionalsnake-basedtracking algorithms9-11,“snake“isonlyusedtoextracttheoutline ofthetargetratherthantoperformtrackinginoursystem. sincesnake-basedtrackingalgorithmsshouldbe underthe assumptionofaslowlymovingobject,itwilllikelyfailin trackingtheobjectwithlargemovement.thissub-section presentsacontourmatchingmethodwhichmakesuseofthe extractedcontourmodelfortrackingofanarbitrary-shaped object. weadoptthesimplepoint-basedsnakescheme9-11and discretize10ittoreducethecomputationalcomplexityand thecomputationaltime.also,wehaveaddedanadditional term8describingthedistancebetweenthecentroidpoint andeachcontrolpointtospeeduptheconvergingrate.from thesnakedeformationinfig.1,wecanseethesnakecontour maygrowoutwardorinwardtoextracttheoutlineofthe humanhead.italsoshowsthatthismethodremainstowork evenwhenthereisrelativemotionorchangeoforientation betweentheobjectandthecamera. (a) (b) (c)(d) (e)(f9h) 01)0j)(k)(1) fig.1.thedeformationofthesnakecounter(dashedline)toextractthehead counterwithvariousposes. afterwehaveacquiredtheoutlineofthetargetobjectas thetemplate,wewillsearchthisobjectviacontourmatching intheedgeimageofthefollowingcapturedimageframe.we needtosumthetotalgradientvaluespixelbypixelintheedge imagealongapre-extractedsnakeoutline.oncethe summationovertheabovecontourisdone,wewillshiftthe centerofthecontourmodeltothenextpixelandthen computethesummationalongtheperimeteroftheoutline again.aftertraversingthroughallthesearchingarea,wecan obtainthelargestsummationwhichwillcorrespondtothe distributionofedgepixelswiththehighestsimilaritytothe objectscontour. thecontourmatchingmethoddoesnotlikesnake deformationwhichconsumesagreatdealofcomputational time.however,westillhavetoupdatethereferencedoutline bysnakedeformationonceafterseveralimageframes.the contourmatchingmethodalsohasalimitationagainstlow- contrastenvironment,justlikewhatthesnake-basedtracking algorithmsnormallyencounter. b.templatematching uptonow,thereareseveralkindsoftechniquedeveloped torealizethetemplatematchingmethod,suchasncc (normalizedcross-correlation),sad(sumofabsolute difference),andssd(sumofsquareddifference),etc.thisis themostgeneralmethodtosearchfortheregionmostsimilar tothereferencetemplate.templatematching,whichisbased onthegray-leveltextureinformationoftheimagefeature,is differentfromthecontourmatching.however,theformerwill takeuplongcomputationaltime.toavoidthat,weusethe mmx(multimediaextension)instructionsprovidedbythe technologyoftheintelscputoperformthesadoperation. thesimd(singleinstructionmultipledata)characteristicsof mmxinstructionscamprovidemorepowerfulcalculation capability,andhencewecanspeedupthetemplatematching searchdrastically. sincethetargetmaychangeitsposeintheimage sequenceduetorelativemovementbetweenthetargetandthe camera,wewillpre-establishthetemplatedatabasewith severalreferencedtemplatesacquiredfromvariousviews. oncetheinterestingtargetappears,the visualtrackingsub- systemcandetectitandlockonit,andthenthe visualservo autopilotwillbeturnedon. c.hybridvisualtrackingalgorithm asmentionedabove,thetemplatematchingbasedon textureisefficientinvisualtrackinginthelow-contrast environment,wherethecontourmatchingmayfail.butwhen thereissomeocclusiontothetarget,theacquiredimage textureofthetargetintheimagesequencewillbeaffected. templatematchingmethodmaylosetrackinginthissituation; however,contourmatchingmaystillworksolongasthe affectedshapeisstillconsiderablyrecognizableandisquite similartothereferencedoutline.ourhumanbeingsalso searchforanddistinguishaninterestingtargetinan environmentbyutilizingitstextureandshapeusually.hence, weintegratethetemplatematchingandthecontourmatching intoahybridtrackingmethodologytoovercometheforegoing drawbacks. assumethecontourmatchingscoreoftheimagespace position(ix,iy)issc(ix,iy),thetemplatematchingscoreis st(ix,iy),andthemixedscoreofthehybridtrackingmethod is 1s1 s(ix,iy)=asc(ix,iy)+8st(ix,iy)(1) wherea,8e0,1areweightingswitha+,=1.wewantto estimatethetargetposition(i$,i*)withthemaxvalueof st(ix,iy) ineachimageframe.thekeypointofthehybrid trackingmethodistoconstructanuserdefinedlook-uptable. thistableliststheweightingsaboutthecontourmatchingand templatematchingsearchresults.thetablemayneedtobe adjustedindifferentsituationorenvironment. eachcapturedimagesizefromccdcamerais320*240 pixels.themicroprocessorusedhereispentium41.5ghz with256mbram,andthematroximaginglibraryis appliedforsomebasicimageprocessing.thetotalprocessing timeofthevisualtrackingimageprocessingisabout30to40 ms. iii.visualservoautopilotcontrol inthissection,weassumetheimageprocessingforvisual trackingproposedinsectioniihasbeenperfectlyapplied. theinterestingtargetpositionhasbeenideallyextractedfrom theimage. a.problemformulation acameraplatformismountedunderneaththeairvehicle. ourgoalistokeeptheairvehiclereconnoiteringthe interestingobjectallthetimewhileflying.sincethecamera mayhavefinitefield-of-view,theairvehiclemusthavesome controlstrategytoadjusttheflyingtrajectoryautonomously. first,weformulatetheoverallproblemandthecoordinate relations12fortheaerialreconnaissanceasfollows.usethe pin-holemodelofthecamera,andlet(xc,yc, z,) bethe interestingobjectcoordinateasapointinthecamera3d space.also,thecameralensistheorigininthecameraspace. assumethecameraconstantfareknown,andthedepthzc canbeyieldfromthelaserrangefinderorgps.moreover,the depthzcalsocouldbeestimatedfromstereoimagesduring flying.accordingtotheperspectiveprojection,the correspondingobjectcoordinate(u,v)intheimageplaneare ixcyczcit=uzclfvzclczct . (2) thecameraplatformhas2dofmotionwithainpitch directionandi?inyawdirection.moreover,this2dof cameraplatformismountedunderneaththeairvehicle,and wecantransformthecameraspacecoordinate(xc,yc,zc) intobodycoordinate(xb,ybzb)oftheairvehicle lxbybzbt =rb(a,i3)lxc yczct+tb(3) withtherotationmatrixrb(a,8)andafixedtranslation amounttb.fromthegyroandgpssensorontheairvehicle, wecanknowtheorientationinformationrwandthecurrent positiontwintheworld.hence,theairvehiclecanbe describedintheworldcoordinateas xwywzwt=rw(gyro)xbybzb +tw(gps) .(4) fig.2.theoverallcoordinaterelationshipoftheaerialreconnaissance. here,weconsiderourairvehicleasaflyingblimp.the simplifiedkinematicblimpmodel17is dyb co cavsxiyb dtz, 9,. ,.r., 46w., .w.s;ge_f.,. mi= 4._._, s m_ fffih.bie .nnmp ,. (a)(b) fig.6.(a)theairvehiclemovingtrajectory(solidline)intheworld coordinatexwywplanewhentheobjectismoving(dashed trajectory). (b)themovingtrajectoryofthetargetviewedintheimage coordinatewhentheobjectismoving. assumethecameraplatforminthemovingrangecan keepthetargetinthecenteroftheimage(u,v-)=(0,0),and thevisualtrackingandvisualservocontrolofthemotorsis ideallycorrect.ifthemotorsislocatedontheboundary,the projectionofthetargetintheimageplanemaynotbekeptin thecenter.inordertoperformourreconnoiteringmission,we stillhavetoadjusttheflyingposeoftheairvehicle.however, theairvehicledoesnthavetoaffordtherotationvelocityas hardasthepreviousworkwhenthe2dofcameraplatform hasthevisualservotrackingability.lettheallowedmoving rangeofthemotorsis (180-a-)a(180+a)inpitchdirection,(6) (45-,6lo),6(45+,6lo)inyawdirection,(7) asshowninfig.7. yi a.x z. inpitchdirectimo inyawdirection fig.7.theshadedportionsindicatetheallowedmovingrangeofthemotors ofthe2dofcameraplatform. whenthevisualtrackingandvisualservoofthemotors canworkperfectly,i.e.themotorsareinthepermissive movingrangeandthetargetpositionintheimageis(0,0),we donthavetoadjusttheairplaneflyingpose(=0). otherwise,weutilizetheimagebasedfuzzylogiccontroller proposedinsectioniiitodesigntheautopilotnavigation. noticethatthedesiredtargetimageposition(ui*,v*)issetas (0,0)currently. finally,wesimulatethesituationwhenthe2dofcamera platformcanmoveinacertainrange.assumethemotorscan moveintherange150oa210and35.,855,i.e. a=30and,6=10.figure8isthesimulationresult.the goalisfulfilledintheimagedomainfig.8.(b),andthe movingtrajectoryofthetwomotorsinfig.8.(c)and(d)are bothboundedintheallowedrange.sincethecameraplatform hasthevisualtrackingandvisualservoabilitymentionedin sectionii,theairvehicleflyingtrajectorydoesnthavetobe hardrestrictedaroundthedesiredcircleinworld xvyv plane. fromfig.8.(a),wecanseethattheairvehiclehovering trajectoryislikeapentagon.thereasonisthatwedefinesthe motorinpitchdirectioncanmovein2a=60range,and thisrangeofangleisapproximatetotheangelofapentagon (360/5=72).ontheotherhand,themovingrangeinpitch direction/%mayaffectthehoveringdistancefarornear betweenthetargetandairvehicle. a h . .=w (degree)(a) (degree) (d) ,m1!1a,4- ua ar (b) fig.8.(a)theairvehiclemovingtrajectoryintheworldcoordinate (sec.) (c) jc. xwywplanewhenthecameraplatformcanmove. (b)themovingtrajectoryofthetargetviewedintheimage coordinatewhenthecameraplatformcanmove. (c)the movingtrajectoryoftheangleainpitchdirection. (d)themovingtrajectoryoftheanglej8inyawdirection. v.experimentinvirtualreality thescenarioisanairvehicleflyinginthevirtualreality withavirtual2dofcameraplatformunderneath,andthe targetisfixedinthevirtualgroundcoveredwithrealaerial image.thevisualtrackeroftheairvehicleinthevirtualworld willbereplacedbythecameramountedonamotionplatform intherealworld,andthevrimagewillbepresentedfromthe viewpointoftheairvehicleunderneath.hence,thevisual trackingsystemprocessestheaerialimageintherealworld, andthentheresultisprovidedfortheimagebasedfuzzy controller.theairvehicleadjustsitsposeandmotioninvr, andthecorrespondingcapturedaerialimagewillbepresented again.theexperimentistestedintheclosed-loopsothatthe visualservosystemcansuccessfullyfulfillitsendowed functions. figure9showstheprojectedimagefromtheairvehicle underneathintherealworld,andwecanseetheperformance ofthehoveringreconnaissance. je)(i)g9)(n) fig.9.theprojectedvrscenefromtheairvehicleunderneath.thesmall rectangleisvisualtrackingcameraviewedregion.thecross-markis thesearchedtarget.thedrawnarrowmeanstheairvehicleflying directionthatiscorrectlycirclingthetarget. vi.conclusion inthispaper,weproposeanintegratedvisionsystem designincludingthevisualtrackingsub-systemandvisual servosub-system.thevisualtrackingsub-systemisproposed forextractionofaninterestingimagefeature.itutilizesthe hybridtrackingalgorithmtoextractandtotrackanarbitrary- shapedobjectinsequenceofimageframeswiththe processingintervalsaboutreal-time(30-40ms.).ithasbeen examinedinseveraltrackingscenarioandhaswide applications.thevisualservosub-systemisappliedto autopilotnavigationoftheairvehicle.theimagebasedfuzzy logiccontrollerisdevelopedforcirclinganinterestingtarget. wehaveverifiedtheproposedfuzzycontrollerwithseveral differentsimulationstoshowitswellperformanceandreliable stability.furthermore,wehaveexperimentedthecasewith the2dofcameraplatforminthevirtualreality.hence,the aerialreconnaissancecanbeachieved withtheintegrated visionsystem. althoughweonlyconsideredtheairvehicleasa simplifiedflyingblips,theproposedimagebasedfuzzylogic controllerstillcanbeappliedtomorecomplexcasesandbe implementedintherealflyingcontrolwithsome modifications.thesimulationaboutacompleteaircraftmodel isunderconstruction.wewillutilizetheimageinformationto controlthethrust,aileron,elevator,andrudderinorderto overcomethehardersituation.ourfutureworkwillalso implementandembedthewholevisionsystemontoauav andfurtherinvestigateitsapplications. references 1r.schroer,“uavs:thefuture,“ieeeaerospaceandelectronic systemsmagazine,vol. 18,pp.61-63,july2003. 2r.w.beard,t.w.mclain,m.a.goodrich,ande.p.anderson, “coordinatedtargetassignmentandinterceptforunmannedair vehicles,“ieeetransactionsonroboticsandautomation,vol. 18,no. 6,2002. 3i.k.nikolos,k.p.valavanis,n.c.tsourveloudis,a.n.kostaras, “evolutionaryalgorithmbasedoffline/onlinepathplannerforuav navigation,“ieeetransactionsonsystems,man,andcybernetics- partb:cybernetics,vol.33,no.6,2003. 4 j.e.kortelingandw.vanderborg,“partialcameraautomationinan unmannedairvehicle,“ieeetransactionsonsystems,man,and cybernetics-parta:systemsandhumans,vol.27,no.2,1997. 5h.zhangandj.p.ostrowski,“visualservoingwithdynamics:control ofanunmannedblimp,“ieeeinterna

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论