




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学大教育(佛山)个性化学习中心Foshan Xueda Education Individualized learning center个性化教学辅导教案学科:数学 任课教师:谭盛德 授课时间:2013 年 8 月 2 日(星期 五 ) 16 : 00 18 : 00 姓名郭海杰年级高一性别男教学课题简单的二元二次方程组的解法教学目标1. 会用代入解简单的二元二次方程组2会用平方法解无理方程3熟悉分式方程的解法重点难点重点:二元二次方程组的解法,分式方程,无理方程的解法难点:二元二次方程组的解法,分式方程,无理方程的解法课前检查作业完成情况:优 良 中 差 建议_第 4次课第四讲 简单的二元二次方程组的解法在初中我们已经学习了一元一次方程、一元二次方程及二元一次方程组的解法,掌握了用消元法解二元一次方程组高中新课标必修2中学习圆锥曲线时,需要用到二元二次方程组的解法因此,本讲讲介绍简单的二元二次方程组的解法含有两个未知数、且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程由一个二元一次方程和一个二元二次方程组成的方程组,或由两个二元二次方程组组成的方程组,叫做二元二次方程组一、由一个二元一次方程和一个二元二次方程组成的方程组一个二元一次方程和一个二元二次方程组成的方程组一般都可以用代入法求解其蕴含着转化思想:将二元一次方程化归为熟悉的一元二次方程求解【例1】解方程组分析:由于方程(1)是二元一次方程,故可由方程(1),得,代入方程(2)消去解:由(1)得: (3)将(3)代入(2)得:,解得:把代入(3)得:;把代入(3)得:原方程组的解是:说明:(1) 解由一个二元一次方程和一个二元二次方程组成的方程组的步骤:由二元一次方程变形为用表示的方程,或用表示的方程(3);把方程(3)代入二元二次方程,得一个一元二次方程;解消元后得到的一元二次方程;把一元二次方程的根,代入变形后的二元一次方程(3),求相应的未知数的 值;写出答案(2) 消,还是消,应由二元一次方程的系数来决定若系数均为整数,那 么最好消去系数绝对值较小的,如方程,可以消去,变形 得,再代入消元(3) 消元后,求出一元二次方程的根,应代入二元一次方程求另一未知数的值, 不能代入二元二次方程求另一未知数的值,因为这样可能产生增根,这一点 切记【例2】解方程组分析:本题可以用代入消元法解方程组,但注意到方程组的特点,可以把、看成是方程的两根,则更容易求解解:根据一元二次方程的根与系数的关系,把、看成是方程的两根,解方程得: 原方程组的解是:说明:(1) 对于这种对称性的方程组,利用一元二次方程的根与系数的关系构造方程时,未知数要换成异于、的字母,如(2) 对称形方程组的解也应是对称的,即有解,则必有解二、由两个二元二次方程组成的方程组1可因式分解型的方程组方程组中的一个方程可以因式分解化为两个二元一次方程,则原方程组可转化为两个方程组,其中每个方程组都是由一个二元二次方程和一个二元一次方程组成【例3】解方程组分析:注意到方程,可分解成,即得或,则可得到两个二元二次方程组,且每个方程组中均有一个方程为二元一次方程解:由(1)得: 或 原方程组可化为两个方程组:用代入法解这两个方程组,得原方程组的解是:说明:由两个二元二次方程组成的方程组中,有一个方程可以通过因式分解,化为两个二元一次方程,则原方程组转化为解两个方程组,其中每一个方程组均有一个方程是二元一次方程【例4】解方程组分析:本题的特点是方程组中的两个方程均缺一次项,我们可以消去常数项,可得到一个二次三项式的方程对其因式分解,就可以转化为例3的类型解:(1) (2)得:即 原方程组可化为两个二元一次方程组:用代入法解这两个方程组,得原方程组的解是:说明:若方程组的两个方程均缺一次项,则消去常数项,得到一个二元二次方程此方程与原方程组中的任一个方程联立,得到一个可因式分解型的二元二次方程组【例5】解方程组分析:(1) +(2)得:,(1) -(2)得:,分别分解(3)、(4)可得四个二元一次方程组解:(1) +(2)得:,(1) -(2)得:解此四个方程组,得原方程组的解是:说明:对称型方程组,如、都可以通过变形转化为的形式,通过构造一元二次方程求解2可消二次项型的方程组【例6】解方程组分析:注意到两个方程都有项,所以可用加减法消之,得到一个二元一次方程,即转化为由一个二元一次方程和一个二元二次方程组成的方程组解:(1) 得:代入(1)得:分别代入(3)得: 原方程组的解是:说明:若方程组的两个方程的二次项系数对应成比例,则可用加减法消去二次项,得到一个二元一次方程,把它与原方程组的任意一个方程联立,解此方程组,即得原方程组的解二元二次方程组类型多样,消元与降次是两种基本方法,具体问题具体解决练 习 A 组1解下列方程组:(1) (2) (3) (4) 2解下列方程组:(1) (2) 3解下列方程组:(1) (2) (3) (4) 4解下列方程组:(1) (2) B 组1解下列方程组:(1) (2) 2解下列方程组:(1) (2) 3解下列方程组:(1) (2) 4解下列方程组: (1) (2) 分式方程和无理方程的解法初中大家已经学习了可化为一元一次方程的分式方程的解法本讲将要学习可化为一元二次方程的分式方程的解法以及无理方程的解法并且只要求掌握(1)不超过三个分式构成的分式方程的解法,会用”去分母”或”换元法”求方程的根,并会验根;(2)了解无理方程概念,掌握可化为一元二次方程的无理方程的解法,会用”平方”或”换元法”求根,并会验根一、可化为一元二次方程的分式方程1去分母化分式方程为一元二次方程【例1】解方程 分析:去分母,转化为整式方程解:原方程可化为:方程两边各项都乘以:即,整理得:解得:或检验:把代入,不等于0,所以是原方程的解; 把代入,等于0,所以是增根所以,原方程的解是说明:(1) 去分母解分式方程的步骤: 把各分式的分母因式分解; 在方程两边同乘以各分式的最简公分母; 去括号,把所有项都移到左边,合并同类项; 解一元二次方程; 验根(2) 验根的基本方法是代入原方程进行检验,但代入原方程计算量较大而分式方程可能产生的增根,就是使分式方程的分母为0的根因此我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为0若为0,即为增根;若不为0,即为原方程的解2用换元法化分式方程为一元二次方程【例2】解方程 分析:本题若直接去分母,会得到一个四次方程,解方程很困难但注意到方程的结构特点,设,即得到一个关于的一元二次方程最后在已知的值的情况下,用去分母的方法解方程解:设,则原方程可化为: 解得或(1)当时,去分母,得;(2)当时,检验:把各根分别代入原方程的分母,各分母都不为0所以,都是原方程的解说明:用换元法解分式方程常见的错误是只求出的值,而没有求到原方程的解,即的值【例3】解方程 分析:注意观察方程特点,可以看到分式与互为倒数因此,可以设,即可将原方程化为一个较为简单的分式方程解:设,则原方程可化为:(1)当时,;(2)当时,检验:把把各根分别代入原方程的分母,各分母都不为0所以,原方程的解是,说明:解决分式方程的方法就是采取去分母、换元等法,将分式方程转化为整式方程,体现了化归思想二、可化为一元二次方程的无理方程根号下含有未知数的方程,叫做无理方程1平方法解无理方程【例4】解方程 分析:移项、平方,转化为有理方程求解 解:移项得:两边平方得:移项,合并同类项得:解得:或检验:把代入原方程,左边右边,所以是增根 把代入原方程,左边 = 右边,所以是原方程的根所以,原方程的解是说明:含未知数的二次根式恰有一个的无理方程的一般步骤:移项,使方程的左边只保留含未知数的二次根式,其余各项均移到方程的右边;两边同时平方,得到一个整式方程;解整式方程;验根【例5】解方程 分析:直接平方将很困难可以把一个根式移右边再平方,这样就可以转化为上例的模式,再用例4的方法解方程 解:原方程可化为: 两边平方得:整理得:两边平方得:整理得:,解得:或检验:把代入原方程,左边=右边,所以是原方程的根 把代入原方程,左边右边,所以是增根所以,原方程的解是说明:含未知数的二次根式恰有两个的无理方程的一般步骤:移项,使方程的左边只保留一个含未知数的二次根式;两边平方,得到含未知数的二次根式恰有一个的无理方程;一下步骤同例4的说明2换元法解无理方程【例6】解方程 分析:本题若直接平方,会得到一个一元四次方程,难度较大注意观察方程中含未知数的二次根式与其余有理式的关系,可以发现:因此,可以设,这样就可将原方程先转化为关于的一元二次方程处理 解:设,则 原方程可化为:,即,解得:或(1)当时,;(2)当时,因为,所以方程无解检验:把分别代入原方程,都适合所以,原方程的解是说明:解决根式方程的方法就是采取平方、换元等法,将根式方程转化为有理方程,体现了化归思想练 习 A 组1解下列方程:(1) (2)(3) (4) 2用换元法解方程:3解下列方程:(1) (2) (3) 4解下列方程:(1) (2) 5用换元法解下列方程:(1) (2) B 组1解下列方程:(1) (2) (3) (4) 2用换元法解下列方程:(1) (2) (3) 3若是方程的解,试求的值 4解下列方程: (1) (2) 5解下列方程:(1) (2) (3) 简单的二元二次方程组答案A 组12 3 4(1) (2) B 组1234,分式方程和无理方程的解法答案A 组123 4(1)(2) 5B 组1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论