




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级圆全章辅导讲义学生: 科目: 第 单元第 节第 课时 教师: 课 题圆教学目标 了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念重点、难点教学重点;圆心角与圆周角的关系教学难点;圆心角与圆周角的知识点的分析和相互之间的关系考点及考试要求1 圆的相关概念2 圆心角的概念3 圆周角的概念4 圆的位置关系 教学内容知识框架知识点l:圆的相关概念 连接圆上任意两点的线段叫做弦,如图线段AC,AB; 经过圆心的弦叫做直径,如图线段AB; 圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作”,读作“圆弧”或“弧AC”大于半圆的弧(如图所示叫做优弧,小于半圆的弧(如图所示)或叫做劣弧 圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆 回答下面两个问题 1圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴? 2你是用什么方法解决上述问题的? (点评)1圆是轴对称图形,它的对称轴是直径,我能找到无数多条直径 2我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的 因此,我们可以得到:圆是轴对称图形,其对称轴是任意一条过圆心的直线 请同学按下面要求完成下题:如图,AB是O的一条弦,作直径CD,使CDAB,垂足为M (1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由 (点评)(1)是轴对称图形,其对称轴是CD (2)AM=BM,即直径CD平分弦AB,并且平分及 这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧 下面我们用逻辑思维给它证明一下: 已知:直径CD、弦AB且CDAB垂足为M 求证:AM=BM,. 分析:要证AM=BM,只要证AM、BM构成的两个三角形全等因此,只要连结OA、OB或AC、BC即可证明:如图,连结OA、OB,则OA=OB在RtOAM和RtOBM中 RtOAMRtOBM AM=BM 点A和点B关于CD对称 O关于直径CD对称 当圆沿着直线CD对折时,点A与点B重合,与重合,与重合 , 进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧知识点2:圆心角的概念如图所示,AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角 按下列要求作图并回答问题:如图所示的O中,分别作相等的圆心角AOB和AOB将圆心角AOB绕圆心O旋转到AOB的位置,你能发现哪些等量关系?为什么? =,AB=AB 理由:半径OA与OA重合,且AOB=AOB 半径OB与OB重合 点A与点A重合,点B与点B重合 与重合,弦AB与弦AB重合 =,AB=AB 因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?点评:如图1,在O和O中,分别作相等的圆心角AOB和AOB得到如图2,滚动一个圆,使O与O重合,固定圆心,将其中的一个圆旋转一个角度,使得OA与OA重合 (1) (2) 你能发现哪些等量关系?说一说你的理由? 我能发现:=,AB=A/B/ 现在它的证明方法就转化为前面的说明了,这就是又回到了我们的数学思想上去呢化归思想,化未知为已知,因此,我们可以得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 同样,还可以得到: 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等知识点3:圆周角的概念 现在通过圆周角的概念和度量的方法回答下面的问题 1一个弧上所对的圆周角的个数有多少个? 2同弧所对的圆周角的度数是否发生变化? 3同弧上的圆周角与圆心角有什么关系? 点评: 1一个弧上所对的圆周角的个数有无数多个 2通过度量,我们可以发现,同弧所对的圆周角是没有变化的 3通过度量,我们可以得出,同弧上的圆周角是圆心角的一半 下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半” (1)设圆周角ABC的一边BC是O的直径,如图所示 AOC是ABO的外角 AOC=ABO+BAO OA=OB ABO=BAO AOC=ABO ABC=AOC(2)如图,圆周角ABC的两边AB、AC在一条直径OD的两侧,那么ABC=AOC吗? 点评:连结BO交O于D同理AOD是ABO的外角,COD是BOC的外角,那么就有AOD=2ABO,DOC=2CBO,因此AOC=2ABC(3)如图,圆周角ABC的两边AB、AC在一条直径OD的同侧,那么ABC=AOC吗? 点评:连结OA、OC,连结BO并延长交O于D,那么AOD=2ABD,COD=2CBO,而ABC=ABD-CBO=AOD-COD=AOC 现在,我如果在画一个任意的圆周角ABC,同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的 从(1)、(2)、(3),我们可以总结归纳出圆周角定理: 在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 进一步,我们还可以得到下面的推导:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径知识点4:1、点与圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;不在同一直线上的三个点确定一个圆 也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆 外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心2、直线与圆的位置关系1、直线与圆相离 无交点;2、直线与圆相切 有一个交点;3、直线与圆相交 有两个交点; 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 切线的性质定理,圆的切线垂直于过切点的半径3、圆与圆的位置关系外离(图1) 无交点 ;外切(图2) 有一个交点 ;相交(图3) 有两个交点 ;内切(图4) 有一个交点 ;内含(图5) 无交点 ; 与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心考点一:圆的基本概念典型例题 例1如图,一条公路的转弯处是一段圆弦(即图中,点O是的圆心,其中CD=600m,E为上一点,且OECD,垂足为F,EF=90m,求这段弯路的半径分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握 解:如图,连接OC 设弯路的半径为R,则OF=(R-90)m OECD CF=CD=600=300(m) 根据勾股定理,得:OC2=CF2+OF2 即R2=3002+(R-90)2 解得R=545 这段弯路的半径为545m 例2有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由 分析:要求当洪水到来时,水面宽MN=32m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R 解:不需要采取紧急措施 设OA=R,在RtAOC中,AC=30,CD=18 R2=302+(R-18)2 R2=900+R2-36R+324 解得R=34(m) 连接OM,设DE=x,在RtMOE中,ME=16 342=162+(34-x)2 162+342-68x+x2=342 x2-68x+256=0 解得x1=4,x2=64(不合设) DE=4 不需采取紧急措施知识概括、方法总结与易错点分析1圆的有关概念;2圆是轴对称图形,任何一条直径所在直线都是它的对称轴3垂径定理及其推论以及它们的应用针对性练习一、选择题1如图1,如果AB为O的直径,弦CDAB,垂足为E,那么下列结论中,错误的是( )ACE=DE B CBAC=BAD DACAD (1) (2) (3)2如图2,O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是( )A4 B6 C7 D83如图3,在O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是( )AABCD BAOB=4ACD C DPO=PD二、填空题1如图4,AB为O直径,E是中点,OE交BC于点D,BD=3,AB=10,则AC=_ (4) (5)2P为O内一点,OP=3cm,O半径为5cm,则经过P点的最短弦长为_;最长弦长为_3如图5,OE、OF分别为O的弦AB、CD的弦心距,如果OE=OF,那么_(只需写一个正确的结论)三、综合提高题1如图24-11,AB为O的直径,CD为弦,过C、D分别作CNCD、DMCD,分别交AB于N、M,请问图中的AN与BM是否相等,说明理由2如图,O直径AB和弦CD相交于点E,AE=2,EB=6,DEB=30,求弦CD长3(开放题)AB是O的直径,AC、AD是O的两弦,已知AB=16,AC=8,AD=8,求DAC的度数考点二:圆心角的概念典型例题例1如图,在O中,AB、CD是两条弦,OEAB,OFCD,垂足分别为EF (1)如果AOB=COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么与的大小有什么关系?AB与CD的大小有什么关系?为什么?AOB与COD呢? 分析:(1)要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可(2)OE=OF,在RtAOE和RtCOF中,又有AO=CO是半径,RtAOERtCOF,AE=CF,AB=CD,又可运用上面的定理得到= 解:(1)如果AOB=COD,那么OE=OF 理由是:AOB=COD AB=CD OEAB,OFCD AE=AB,CF=CD AE=CF 又OA=OC RtOAERtOCF OE=OF (2)如果OE=OF,那么AB=CD,=,AOB=COD 理由是: OA=OC,OE=OF RtOAERtOCF AE=CF 又OEAB,OFCD AE=AB,CF=CD AB=2AE,CD=2CF AB=CD =,AOB=COD 例2如图3和图4,MN是O的直径,弦AB、CD相交于MN上的一点P,APM=CPM (1)由以上条件,你认为AB和CD大小关系是什么,请说明理由(2)若交点P在O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由 (3) (4) 分析:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,只要说明它们的一半相等 上述结论仍然成立,它的证明思路与上面的题目是一模一样的 解:(1)AB=CD 理由:过O作OE、OF分别垂直于AB、CD,垂足分别为E、F APM=CPM 1=2 OE=OF 连结OD、OB且OB=OD RtOFDRtOEB DF=BE 根据垂径定理可得:AB=CD (2)作OEAB,OFCD,垂足为E、F APM=CPN且OP=OP,PEO=PFO=90 RtOPERtOPF OE=OF 连接OA、OB、OC、OD 易证RtOBERtODF,RtOAERtOCF 1+2=3+4 AB=CD知识概括、方法总结与易错点分析 1圆心角概念 2在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都部分相等,及其它们的应用针对性练习 一、选择题 1如果两个圆心角相等,那么( ) A这两个圆心角所对的弦相等;B这两个圆心角所对的弧相等 C这两个圆心角所对的弦的弦心距相等;D以上说法都不对 2在同圆中,圆心角AOB=2COD,则两条弧AB与CD关系是( ) A=2 B C2 D不能确定 3如图5,O中,如果=2,那么( )AAB=AC BAB=AC CAB2AC (5) (6) 二、填空题 1交通工具上的轮子都是做圆的,这是运用了圆的性质中的_ 2一条弦长恰好为半径长,则此弦所对的弧是半圆的_3如图6,AB和DE是O的直径,弦ACDE,若弦BE=3,则弦CE=_ 三、解答题 1如图,在O中,C、D是直径AB上两点,且AC=BD,MCAB,NDAB,M、N在O上 (1)求证:=;(2)若C、D分别为OA、OB中点,则成立吗?2如图,以ABCD的顶点A为圆心,AB为半径作圆,分别交BC、AD于E、F,若D=50,求的度数和的度数 3如图,AOB=90,C、D是AB三等分点,AB分别交OC、OD于点E、F,求证:AE=BF=CD考点三:圆周角典型例题例1如图,AB是O的直径,BD是O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么? 分析:BD=CD,因为AB=AC,所以这个ABC是等腰,要证明D是BC的中点,只要连结AD证明AD是高或是BAC的平分线即可 解:BD=CD 理由是:如图24-30,连接AD AB是O的直径 ADB=90即ADBC 又AC=AB BD=CD 例2如图,已知ABC内接于O,A、B、C的对边分别设为a,b,c,O半径为R,求证:=2R 分析:要证明=2R,只要证明=2R,=2R,=2R,即sinA=,sinB=,sinC=,因此,十分明显要在直角三角形中进行 证明:连接CO并延长交O于D,连接DB CD是直径 DBC=90 又A=D 在RtDBC中,sinD=,即2R= 同理可证:=2R,=2R =2R知识概括、方法总结与易错点分析 1圆周角的概念; 2圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都相等这条弧所对的圆心角的一半; 3半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径 4应用圆周角的定理及其推导解决一些具体问题针对性练习:1. 在半径为50厘米的O中,弦AB的长为50厘米,(1) 求AOB的大小;(2)计算点O到AB的距离;(3)求弦AB所对的圆周角的度数.OABCD2. 如图,OABC,AOB=50,求ADC的大小.3.如图,AB是O的直径,AD=DE,AE与BD交于点C,则图中与BCE相等的角有哪几个?B,OADEC4.如图,AB是O的直径,ABC=30,则求BAC的度数.ABCO5.已知,O经过ABC的三个顶点,B=30,AC=2厘米,求O的半径.6.如图,OB,OC是O的半径,点A是O上一点,且ABO=20,ACO=30,求A.ABCO 7.已知,弦AB把圆周分成1:2的两部分,圆的半径为1,求弦AB的长. 8.如图,已知AB=AC,APC=60.(1)求证:ABC是等边三角形;(2)如果BC=4厘米,求O的面积.OABCP考点四:圆的位置关系典型例题 例1已知梯形ABCD中,ABCD,AD=BC,AB=48cm,CD=30cm,高27cm,求作一个圆经过A、B、C、D四点,写出作法并求出这圆的半径(比例尺1:10) 分析:要求作一个圆经过A、B、C、D四个点,应该先选三个点确定一个圆,然后证明第四点也在圆上即可要求半径就是求OC或OA或OB,因此,要在直角三角形中进行,不妨设在RtEOC中,设OF=x,则OE=27-x由OC=OB便可列出,这种方法是几何代数解 作法分别作DC、AD的中垂线L、m,则交点O为所求ADC的外接圆圆心 ABCD为等腰梯形,L为其对称轴 OB=OA,点B也在O上 O为等腰梯形ABCD的外接圆 设OE=x,则OF=27-x,OC=OB 解得:x=20 OC=25,即半径为25m例2如图,AB为O的直径,C是O上一点,D在AB的延长线上,且DCB=A (1)CD与O相切吗?如果相切,请你加以证明,如果不相切,请说明理由(2)若CD与O相切,且D=30,BD=10,求O的半径 分析:(1)要说明CD是否是O的切线,只要说明OC是否垂直于CD,垂足为C,因为C点已在圆上 由已知易得:A=30,又由DCB=A=30得:BC=BD=10 解:(1)CD与O相切 理由:C点在O上(已知) AB是直径 ACB=90,即ACO+OCB=90 A=OCA且DCB=A OCA=DCB OCD=90 综上:CD是O的切线 (2)在RtOCD中,D=30 COD=60 A=30 BCD=30 BC=BD=10 AB=20,r=10 答:(1)CD是O的切线,(2)O的半径是10例3如图,O的直径AB=12cm,AM、BN是两条切线,DC切O于E,交AM于D,交BN于C,设AD=x,BC=y (1)求y与x的函数关系式,并说明是什么函数? (2)若x、y是方程2t2-30t+m=0的两根,求x,y的值(3)求COD的面积分析:(1)要求y与x的函数关系,就是求BC与AD的关系,根据切线长定理:DE=AD=x,CE=CB=y,即DC=x+y,又因为AB=12,所以只要作DFBC垂足为F,根据勾股定理,便可求得(2)x,y是2t2-30t+m=0的两根,那么x1+x2=,x1x2=,便可求得x、y的值 (3)连结OE,便可求得 解:(1)过点D作DFBC,垂足为F,则四边形ABFD为矩形 O切AM、BN、CD于A、B、E DE=AD,CE=CB AD=x,CB=y CF=y-x,CD=x+y 在RtDCF中,DC2=DF2+CF2 即(x+y)2=(x-y)2+122 xy=36 y=为反比例函数; (2)由x、y是方程2t-30t+m=0的两根,可得: x+y=15 同理可得:xy=36 x=3,y=12或x=12,y=3 (3)连结OE,则OECD SCOD=CDOE=(AD+BC)AB =1512 =45cm2知识概括、方法总结与易错点分析1、 点与圆的位置关系2、 直线与圆的位置关系3、 圆与圆的位置关系4、 内心 外心的理解针对性练习一、 选择题1、如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是【】A内含 B相交 C相切 D外离2已知两圆的半径分别为6和8,圆心距为7,则两圆的位置关系是 ( )A外离 B外切 C相交 D内切3若的半径为3cm,的半径为4cm,且圆心距,则与的位置关系是( )A外离B内切C相交D内含4 O的半径为,圆心O到直线的距离为,则直线与O的位置关系是()xyO11BAA 相交 B 相切 C 相离 D 无法确定5如图,O的半径为2,点A的坐标为(2,),直线AB为O的切线,B为切点则B点的坐标为 AB C D 7. 以正方形ABCD的BC边为直径作半圆O,过点D作直线切半圆于点F,交AB边于点E,则ADE和直角梯形EBCD周长之比为( )A. 3:4 B. 4:5 C. 5:6 D.6:78如图,正方形中,是边上一点,以为圆心、为半径的半圆与以为圆心,为半径的圆弧外切,则的值为( )AB CDPBAO第9题(第11题图)ABCEFDO(第8题)第10题图ABCOP9如图1,从圆外一点引圆的两条切线,切点分别为如果,那么弦的长是( )A4B8CD10如图,分别是的切线,为切点,是的直径,已知,的度数为( )ABCD11、如图,直线AB与半径为2的O相切于点C,D是O上一点,且EDC30,弦EFAB,则EF的长度为 ( ) A2 B C D12已知O和O相切,两圆的圆心距为9cm,的半径为4cm,则O的半径为( )A5cm B13cm C9 cm 或13cm D5cm 或13cm二、 填空题1如图,已知是的内切圆,且,则为 度2如图,为四个等圆的圆心,A,B,C,D为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图,为五个等圆的圆心,A,B,C,D,E为切点,请你在图中画出一条直线,将这五个圆分成面积相等的两部分,并说明这条直线经过的两个点是 BCAO(第1题)第(2)题图第(2)题图D 3如图,在ABC中,AB=2,AC=,以A为圆心,1为半径的圆与边BC相切,则的度数是 ABC第3题图(第4题图)ABOADPEBC(第6题图)4如图,轮椅车的大小两车轮(在同一平面上)与地面的触点间距离为80cm,两车轮的直径分别为136cm,16cm,则此两车轮的圆心相距 cm5. 如图,奥运五环标志里,包含了圆与圆的位置关系中的外离和 6如图,从外一点引的两条切线,切点分别是,若,是上的一个动点(点与两点不重合),过点作的切线,分别交于点,则的周长是 AOBNM7如图,是的直径,为弦,过点的的切线交延长线于点若,则的半径为 cmABOCPM8.分别以梯形ABCD的上底AD、下底BC的长为直径作、,若两圆的圆心距等于这个梯形的中位线长,则这两个圆的位置关系是_.三、 解答题1如图,已知O是ABC的外接圆,AB为直径,若PAAB,PO过AC的中点M,求证:PC是O的切线2.如图所示,是的直径,是弦,于点(1)求证:是的切线;(2)若,求的长BCPOA3.如图,内接于,为的直径,过点作的切线与的延长线交于点,求的长BDCEAO4.如图所示,是直角三角形,以为直径的交于点,点是边的中点,连结(1)求证:与相切;(2)若的半径为,求APDBCO5.(08山东潍坊20题)如图,是圆的直径,厘米,是圆的切线,为切点过作,交于点,连结(1)求证;(2)若切线的长为12厘米,求弦的长6.已知:如图,中,以为直径的交于点,于点(1)求证:是的切线;CPBOAD(2)若,求的值7、为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm,求铁环的半径. 8.如图,在中,平分交于点,点在边上且C(第8题)BDAE(1)判断直线与外接圆的位置关系,并说明理由;(2)若,求的长 9、已知:如图,在ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DEAC,垂足为点EADBOCE求证:(1)ABC是等边三角形;(2) 图10ODBCFEA10.如图10,为的直径,为弦的中点,连接并延长交于点,与过点的切线相交于点若点为弧AF的中点,连接求证:DCOABE11.已知:如图,在中,点在上,以为圆心,长为半径的圆与分别交于点,且(1)判断直线与的位置关系,并证明你的结论;(2)若,求的长12.如图14,直线经过上的点,并且,交直线于,连接(1)求证:直线是的切线;(2)试猜想三者之间的等量关系,并加以证明;(3)若,的半径为3,求的长(第13题图)13.如图,O是ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DEBC,DE交AB的延长线于点E,连结AD、BD(1)求证:ADB=E;(3分)(2)当点D运动到什么位置时,DE是O的切线?请说明理由(3)当AB=5,BC=6时,求O的半径(4分)14.如图,BD是O的直径,AB与O相切于点B,过点D作OA的平行线交O于点C,AC与BD的延长线相交于点E(1) 试探究A E与O的位置关系,并说明理由;(2) 已知ECa,EDb,ABc,请你思考后,选用以上适当的数据,设计出计算O的半径r的一种方案:你选用的已知数是; 写出求解过程(结果用字母表示)15、如图,AB是O的直径,BAC=30,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且ECF=E.(1)证明CF是O的切线;(2)设O的半径为1,且AC=CE,求MO的长.巩固作业1. 已知:AB交圆O于C、D,且ACBD.你认为OAOB吗?为什么? 2. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。 3. 如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。你认为图中有哪些相等的线段?为什么? 4. 如图所示,OA是圆O的半径,弦CDOA于点P,已知OC=5,OP=3,则弦CD=_。5. 如图所示,在圆O中,AB、AC为互相垂直且相等的两条弦,ODAB,OEAC,垂足分别为D、E,若AC=2cm,则圆O的半径为_cm。6. 如图所示,AB是圆O的直径,弦CDAB,E为垂足,若AB=9,BE=1,则CD=_。 7. 如图所示,在ABC中,C90,AB10,AC8,以AC为直径作圆与斜边交于点P,则BP的长为_。8. 如图所示,四边形ABCD内接于圆O,BCD=120,则BOD=_度。9. 如图所示,圆O的直径为10,弦AB的长为6,M是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 8000-220:2025 EN Data quality - Part 220: Sensor data: Quality measurement
- 小区美容院合伙经营合同5篇
- 快递员招聘合同范本
- 轻钢结构合同范本
- 福建省公民出国旅游合同2篇
- 街舞机构续费合同范本
- 医院地坪采购合同范本
- 入团申请书高中生(5篇)
- 培优补差工作计划怎么写(5篇)
- 志愿者的英文题目及答案
- (2025秋新版)部编版八年级上册道德与法治全册教案
- 八年级心理健康体验式教学计划
- 二手房资金监管协议书
- 消防监控考试题初级及答案
- 2025年太阳能海水淡化项目经济效益评估报告
- 2025年湖南湘西自治州州直事业单位招聘考试笔试试卷附答案
- 《小学开学第一课》课件
- 2025-2031年中国有源相控阵雷达行业市场发展形势及投资潜力研判报告
- 大货车货运安全知识培训课件
- 消防车辆事故课件
- 教学课件:大学生心理素质训练
评论
0/150
提交评论