




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
利用基本不等式求最值的技巧 基本不等式具有将“和式”转化为“积式”与将“积式”转化为“和式”的功能,但一定要注意应用的前提:“一正”、“二定”、“三相等”所谓“一正”是指“正数”,“二定”指应用定理求最值时,和或积为定值,“三相等”是指满足等号成立的条件 在运用基本不等式与或其变式解题时,要注意如下技巧1:配系数【例1】已知,求的最大值.2:添加项【例2】已知,求的最小值.3:分拆项【例3】已知,求的最小值.4:巧用”1”代换【例4】已知正数满足,求的最小值.一般地有,其中都是正数.这里巧妙地利用”1”作出了整体换元,从而使问题获得巧解.【例5】已知正数满足,求的最小值.5:换元【例6】已知,求的最小值.【例7】已知,求的最大值.6:利用对称性【例8】已知正数满足,求的最大值.【分析】由于条件式与结论式都是关于正数轮换对称的,故最大值必然是当时取到,这时,从而得到下面证明思路与方向【解】利用基本不等式得,以上三式同向相加得,所以化简得,所以当且仅当时取到最大值.一般地,如果条件式与结论式都是关于各个元素轮换对称的,则最值必定是在各个元素相等时取到.利用这一思想往往可给解题者提供解题的方向与思路.7:直接运用化为其它【例9】已知正数满足,求的取值范围.含参不等式的解法举例当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。下面举例说明,以供同学们学习。一、含参数的一元二次不等式的解法:例1:解关于的x不等式分析:当m+1=0时,它是一个关于x的一元一次不等式;当m+11时,还需对m+10及m+10来分类讨论,并结合判别式及图象的开口方向进行分类讨论:当m0,图象开口向下,与x轴有两个不同交点,不等式的解集取两边。当1m0, 图象开口向上,与x轴有两个不同交点,不等式的解集取中间。当m=3时,=4(3m)=0,图象开口向上,与x轴只有一个公共点,不等式的解为方程的根。当m3时,=4(3m)3时, 原不等式的解集为。小结:解含参数的一元二次不等式可先分解因式再讨论求解,若不易分解,也可对判别式分类讨论。利用函数图象必须明确:图象开口方向,判别式确定解的存在范围,两根大小。二次项的取值(如取0、取正值、取负值)对不等式实际解的影响。牛刀小试:解关于x的不等式思路点拨:先将左边分解因式,找出两根,然后就两根的大小关系写出解集。具体解答请同学们自己完成。二、含参数的分式不等式的解法:例2:解关于x的不等式分析:解此分式不等式先要等价转化为整式不等式,再对ax1中的a进行分类讨论求解,还需用到序轴标根法。解:原不等式等价于当=0时,原不等式等价于解得,此时原不等式得解集为x|;当0时, 原不等式等价于,则:当原不等式的解集为;当0原不等式的解集为;当原不等式的解集为;当1和1分为两类,再在1的情况下,又要按两根与2的大小关系分为三种情况。有很多同学找不到分类的依据,缺乏分类讨论的意识,通过练习可能会有所启示。具体解答请同学们自己完成。三、含参数的绝对值不等式的解法:例3:解关于x的不等式分析:解绝对值不等式的思路是去掉绝对值符号,本题要用到同解变形,首先将原不等式化为不含绝对值符号的不等式,然后就、两个参数间的大小关系分类讨论求解。解:当时,此时原不等式的解集为;当时,由,此时原不等式的解集为;当时,此时此时原不等式的解集为;综上所述,当时,原不等式的解集为;当时,原不等式的解集为。小结:去掉绝对值符号的方法有定义法:平方法:利用同解变形:;牛刀小试:(2004年辽宁省高考题)解关于x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无色素性黑色素瘤护理查房
- 安顺市2024-2025学年七年级下学期语文期末模拟试卷
- 阿拉善盟2024-2025学年八年级上学期语文期中模拟试卷
- 安徽省滁州市来安县2024-2025学年高三上学期期末考试化学试卷及答案
- 湖南省常德市桃源县凌津滩乡中学2025年上学期七年级《生物体的结构层次》测试(无答案)
- 心理健康家长讲堂携手共育成就孩子未来模板
- 社区消防知识培训课件活动
- 社区消防知识培训课件会
- 2024-2025学年江西省部分学校九年级(下)月考物理试卷(3月份)-自定义类型(含答案)
- 午餐外卖合同范本
- 跌倒护理RCA案例汇报
- 船厂安全课件
- 2025村后备干部考试题库(含答案)
- 中国古诗词歌曲课件
- 钻孔桩安全培训
- 对外经贸大学2025年硕士研究生招生专业目录
- 数据标注教学课件
- 2025年山东高考化学真题及答案
- 2025年云南省中考道德与法治试卷真题(含标准答案及解析)
- 呼吸系统疾病诊疗指南共识
- 2025年陕西高考化学试卷试题真题及答案详解(山西宁夏青海适用)
评论
0/150
提交评论