两圆外切的性质与应用.doc_第1页
两圆外切的性质与应用.doc_第2页
两圆外切的性质与应用.doc_第3页
两圆外切的性质与应用.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

_两圆外切的性质与应用两圆的位置关系有外离、外切、相交、内切、内含五种关系,当相切的两个圆,除了切点外,每个圆上的点都各在另一个圆的外部时,我们称这两个圆外切。而且外切关系是两圆位置关系中比较重要的一种关系,它具有的性质较多。4 性质(1) 外切两圆的连心线必经过它们的切点,且两个圆心之间的距离d(圆心距)等于两个圆的半径之和,即d=R+r两圆外切,其中任一个圆的过两圆切点的切线,也必是另一个圆的切线,也就是说,两个圆心及切点这三点共线。例1 若两圆半径分别为R,r(Rr),其圆心距为d,且 ,则两圆的位置关系是_.解:因为所以所以所以d=R+r(R+r=-d不合题意).因此两圆的位置关系是外切.二、外切的两圆,共有三条公切线,其中两条是外公切线,一条是内公切线,内公切线过两圆的切点且垂直于它们的连心线。如图1,半径为r、R的外切,外公切线AB分别切于A、B,那么AB就是外公切线长。连,由切线性质知可证得四边形ABCD为矩形,得,因此,而在Rt性质(2)外公切线长等于7 两圆外切,经常添的辅助线是内公切线,因为内公切线可以产生两圆相等的弦切角,可将两圆的元素联系起来.性质(3)添内公切线是解决两圆外切问题的金钥匙.例2 已知如图2, 外切于点C,PA切于点A,交于点P、D,直接PC交于点B。求证:AC平分BCD。解:过C作的内公切线MN交AP于M,所以MCD=P.又PA切于点A,所以MAC=ACM,所以ACB=P+MAC=MCD+MCA=DCA.即AC平分BCD.四.看下一例:如图3, 外切于点P,AB为两圆的外公切线,切点为A、B,求证为直角三角形. 解:过P作内公切线交AB于E,由切线长定理知EB=EP,EP=EA,即EB=EP=EA,根据定理(在一个三角形中,一边上的中线等于该边的一半,那么这个三角形是直角三角形)知为直角三角形.此题中AB为外公切线与两圆的切点,P为两圆切点.我们习惯上把称为切点三角形.在关于两圆外切关系的几何证明题中,运用切点三角形来分析问题,解决问题,可以收到事半功倍的效果,它的应用在两圆外切中尤为重要.性质(4)切点三角形是直角三角形.例4(重庆市中考题)如图4, 外切于点P,内公切线PC与外公切线AB(A、B分别是上的切点)相交于点C,已知的半径分别为3、4,则PC的长等于_.分析:由于AB为外公切线,由性质(2)知又由性质(4)知为直角在三角形且CP=CB=AC,故CP为斜边AB上的中线,因此例5.如图5, 外切于点P,AB为两圆的外公切线,切点为A、B,连心线于C,交于D,CA与DB的延长线相交于Q,求证:.简析:连AP、BP,由上题知APB=Rt,又CAP=PBD=Rt,故由四边形内角和定理知Q=Rt,即两圆外切关系的这些性质,在解题时要灵活的应用.在例4、例5中的切点三角形并不是现成有的,而是添线构造出来的,难度稍大些,因此脑子中对切点三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论