




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 6 可能性( 2)教学案 本资料为 WoRD 文档,请点击下载地址下载全文下载地址文 章来源 m 可能性( 2) 班级学号姓名 审核人:初一数学组 一、学习目标 继续体会随机事件在每一次实验中是否发生是不可预言的,但在大数次的反复实验后,随机事件发生的频率(成功率)会逐渐稳定在某一数值上。 二、学习过程 情景设置: 飞机失事会给旅客造成意外伤害。一家保险公司要为购买机票的旅客进行保险,应该向旅客收取多少保费呢?为此保险公司必须精确计算出飞机失事的可能性有多大。类似这样的问题在我们的日常生活中 也经常遇到。 例如: 抛掷 1 枚均匀硬币,正面朝上。 在装有彩球的袋子中,任意摸出的 1 个球恰好是红球。 明天将会下雨。 抛掷 1 枚均匀骰子, 6 点朝上。 2 / 6 都是随机事件,你还能再举出一些随机事件吗? 新课讲解: 随机事件发生的可能性有大有小。一个事件发生可能性大小的数值,称为这个事件的概率()。若用表示一个事件,则我们就用表示事件发生的概率。 通常规定,必然事件发生的概率是 1,记作;不可能事件 发生的概率为 0,记作;随机事件发生的概率是 0 和 1 之间的 一个数,即 0 1。 任一随机 事件,它发生的概率是由它自身决定的,且是客观存在的,概率是随机事件自身的属性。它反映这个随机事件发生的可能性大小。 数学实验室: 抛掷硬币试验: 1分别汇总 5 人, 10 人, 15 人, , 50 人的试验结果,并将 试验数据汇总填入下表: 2根据上表,完成下面的折线统计图: 3观察上面的折线统计图,你发现了什么规律?请与同学3 / 6 交流。 下表是小明抛硬币试验获得的数据(折线图在课本 P): 观察课本 P 折线统计图,当抛掷硬币次数很大时,正面朝上的频率是否比较稳定? 下表是自 18 世纪以来一些统计学 家进行抛硬币试验所得的数据。 观察此表,你发现了什么? 从上表可以看出: “ 正面朝上 ” 的频率总在附近波动,而且近似等于。 人们在抛掷硬币、骰子之类的游戏中发现:在充分多次试验中,一个随机事件的频率一般会在一个定值附近摆动,而且试验次数越多,摆动幅度越小。这个性质称为频率的稳定性。 观察下面的表 1 和表 2,你能发现什么? 从表 1 可以看到,当抽查的足球数很多时,抽到优等品的频率接近于某一个常数,并在它附近摆动。 从表 2 可以看到,当实验的绿豆的粒数很多时,绿豆发芽的频率接近于某一个常数,并在它附近 摆动。 一般地,在一定条件下大量重复进行同一试验时,事件 A 发生的频率会稳定地在某一个常数附近摆动,这个常数就是事件 A 发生的概率。事实上,事件 A 发生的概率的精确值,即4 / 6 这个常数还是未知的,但是在实际工作中,人们常把试验次数很大时事件发生的频率作为概率的近似值。 课堂小结: 1.预测随机事件在每一次实验中发生的可能性,可以预先估计随机事件 在每一次实验中发生的机会有多大,不发生的机会机会有多大。 2.随机事件的发生与不发生的机会不总是对半的(都为50%),应通过开展一系列数学实践活动从中掌握预测的一些规律。 【课后作业】 【基础演练】 : 1、一个口袋里有 5 个红球, 5 个黄球,每个球除颜色外都相同,任意摸 1 个,则下列说法正确的是 () A、只能摸到 1 个红球 B、只能摸到 1 个黄球 c、可能摸到 1 个红球 D、不可能摸到 1 个红球 2、任意两个整数,它们的和还是整数的概率是() A、 B、 c、 0D、 1 3、掷一枚硬币,随着所掷次数的增加,可知() A、掷得正面朝上的次数比掷得反面朝上的次数多 B、掷得反面朝上的次数比掷得正面朝上的次数多 c、掷得正面朝 上的次数和掷得反面朝上的次数逐渐接近 5 / 6 D、没有规律 4、投掷一枚普通的正方体骰子,四位同学各自发表了以下见解: 出现 “ 点数为奇数 ” 的概率等于出现 “ 点数为偶数 ” 的概率; 只要连掷 6 次,一定会 “ 出现一点 ” ; 投掷前默念几次 “ 出现 6 点 ” ,投掷结果 “ 出现 6 点 ” 的可能性就会加大; 连续投掷 3 次,出现的点数之和不可能等于 19。其中正确的见解是() A、 1 个 B、 2 个 c、 3 个 D、 4 个 5、如果一个事件不发生的概率为 99%,那么这个事件() A、必然发生 B、不可能发生 c、发生的可能性很大 D、发生的可能性很小 6、事件 “ 同一枚硬币抛 50 次,没有一次正面朝上 ” 是() A、必然事件 B、不可能事件 c、随机事件 D、何种事件不能肯定 7、一枚均匀的硬币抛 200 次,若正面朝上的次数为 102 次,那么反面朝上的频率是 _ 8、一个事件经过 5000 次试验,它的频率是,那么它的概率估计值是 _ 9、如图所示是一个可以自由转动的转盘,转 1 次得到 1 个数, 利用这种转盘,可能得到的最大三位数是,可能得到 6 / 6 最小三位数是,哪一个出现的可能性大?为什么? 10、一个圆形转盘的半径为 2cm,现将圆盘分成若干个扇形 ,并分别相间涂上红、黄两种颜色,转盘转动 10000 次,指针指向红色部分为 2500 次。请问指针指向红色的概率估计值是多少?转盘上黄色部分的面积大约是多少? 【能力提升】 : 11、某种油菜籽在相同条件下的发芽试验结果如表: ( 1)请将数据表补充完整; 每批
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025草坪修剪项目政府采购与生态修复合同
- 2025叉车租赁合同协议-仓储物流设施升级改造
- 2025版商场档口租赁合同(含品牌形象维护责任)
- 2025年泰州二手房买卖合同+智能家居设备安装服务合同
- 2025版智能通风排烟系统安装与能源审计合同样本
- 2025年度智能安防系统采购意向协议书
- 2025年大学兼职教师合作开发与成果转化协议
- 2025版核能设备监造与核安全防护合同
- 2025版农业合作社股权变更与乡村振兴战略实施协议
- 2025版房地产开发企业委托反担保合同范本
- 2025办公室租赁合同简易范本下载
- 定向增发业务培训
- 2025年初级美容师理论知识复习资料试题及答案
- 餐饮店长转正汇报
- 2025年贵州省中考语文试卷(含答案与解析)
- 2025年广东省中考语文试卷(含答案解析)
- 2025年昆山校医考试题库
- 8-教育系统-安全生产治本攻坚三年行动工作方案及台账模板(2024-2026年)
- 2025年云南高考历史试卷解读及备考策略指导课件
- 2025至2030中国纤维素纳米纤维(CNF)行业项目调研及市场前景预测评估报告
- (高清版)T∕CES 243-2023 《构网型储能系统并网技术规范》
评论
0/150
提交评论