




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品 一元二次方程的根的判别式1、方程2x2+3xk=0根的判别式是 ;当k 时,方程有实根。2、关于x的方程kx2+(2k+1)xk+1=0的实根的情况是 。3、方程x2+2x+m=0有两个相等实数根,则m= 。4、关于x的方程(k2+1)x22kx+(k2+4)=0的根的情况是 。5、当m 时,关于x的方程3x22(3m+1)x+3m21=0有两个不相等的实数根。6、如果关于x的一元二次方程2x(ax4)x2+6=0没有实数根,那么a的最小整数值是 。7、关于x的一元二次方程mx2+(2m1)x2=0的根的判别式的值等于4,则m= 。8、设方程(xa)(xb)cx=0的两根是、,试求方程(x)(x)+cx=0的根。9、不解方程,判断下列关于x的方程根的情况:(1)(a+1)x22a2x+a3=0(a0)(2)(k2+1)x22kx+(k2+4)=010、m、n为何值时,方程x2+2(m+1)x+3m2+4mn+4n2+2=0有实根?11、求证:关于x的方程(m2+1)x22mx+(m2+4)=0没有实数根。12、已知关于x的方程(m21)x2+2(m+1)x+1=0,试问:m为何实数值时,方程有实数根?13、 已知关于x的方程x22xm=0无实根(m为实数),证明关于x的方程x2+2mx+1+2(m21)(x2+1)=0也无实根。14、已知:a0,ba+c,判断关于x的方程ax2+bx+c=0根的情况。15、m为何值时,方程2(m+1)x2+4mx+2m1=0。(1)有两个不相等的实数根;(2)有两个实数根;(3)有两个相等的实数根;(4)无实数根。16、当一元二次方程(2k1)x24x6=0无实根时,k应取何值?17、已知:关于x的方程x2+bx+4b=0有两个相等实根,y1、y2是关于y的方程y2+(2b)y+4=0的两实根,求以、为根的一元二次方程。18、若x1、x2是方程x2+x+q=0的两个实根,且,求p和q的值。19、设x1、x2是关于x的方程x2+px+q=0(q0)的两个根,且x21+3x1x2+x22=1,求p和q的值。20、已知x1、x2是关于x的方程4x2(3m5)x6m2=0的两个实数根,且,求常数m的值。21、已知、是关于x的方程x2+px+q=0的两个不相等的实数根,且322+3=0,求证:p=0,q022、已知方程(x1)(x2)=m2(m为已知实数,且m0),不解方程证明:(1)这个方程有两个不相等的实数根;(2)一个根大于2,另一个根小于1。23、k为何值时,关于x的一元二次方程kx24x+4=0和x24kx+4k24k5=0的根都是整数。24、不解方程判别根的情况x(x2)+1=0。25、不解方程判别根的情况x20.4+0.6=0;26、不解方程判别根的情况2x24x+1=0;27、不解方程判别根的情况4y(y5)+25=0;28、不解方程判别根的情况(x4)(x+3)+14=0;29、不解方程判别根的情况。30、试证:关于x的一元二次方程x2+(a+1)x+2(a2)=0一定有两个不相等的实数根。31、若a1,则关于x的一元二次方程2(a+1)x2+4ax+2a1=0的根的情况如何?32、若a6且a0,那么关于x的方程ax25x+1=0是否一定有两个不相等的实数根?为什么?若 此方程一定有两个不相等的实数根,是否一定满足a6且a0?33、.a为何值时,关于x的一元二次方程x22ax+4=0有两个相等的实数根?34、已知关于x的一元二次方程ax22x+6=0没有实数根,求实数a的取值范围。35、已知关于x的方程(m+1)x2+(12x)m=2。m为什么值时:(1)方程有两个不相等的实数根?(2 )方程有两个相等的实数根?(3)方程没有实数根?36、分别根据下面的条件求m的值:(1)方程x2(m+2)x+4=0有一个根为1;(2)方程x2(m+2)x+4=0有两个相等的实数根;(3)方程mx23x+1=0有两个不相等的实数根;(4)方程mx2+4x+2=0没有实数根;(5)方程x22xm=0有实数根。37、已知关于x的方程x2+4x6k=0没有实数根,试判别关于y的方程y2+(k+2)y+6k=0的根的情况。38、m为什么值时,关于x的方程mx2mxm+5=0有两个相等的实数根?39、已知关于x的一元二次方程 (p0)有两个相等的实数根,试证明关于x的一元二次方程x2+px+q=0有两个不相等的实数根。40、已知一元二次方程x26x+5k=0的根的判别式=4,则这个方程的根为 。41、若关于x的方程x22(k+1)x+k21=0有实数根,则k的取值范围是( ) A.k1 B.k1 C.k1 D.k-142、已知方程ax2+bx+c=0(a0,c0)无实数根,试判断方程的根的情况。成功就是先制定一个有价值的目标,然后逐步把它转化成现实的过程。这个过程因为信念而牢固,因为平衡而持久。生活才需要目标,生命不需要目标。就像驴子面前吊着个萝卜就会往前走。正因为有那个目标,你才有劲儿往前走。在做的过程中,你已体验到生命是什么。问题是,没有几个人,能够在没有目标的情况
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 清洁处理承包合同协议书
- 渠道承包合同协议书模板
- 渣土车司机劳务合同范本
- 网上买卖设备的合同范本
- 电力产权分界协议协议书
- 湖北省劳动合同补充协议
- 艺人与酒吧合作合同范本
- 材料未签合同的进场协议
- 电梯维修安全协议书合同
- 签了合作协议不履行合同
- GB/T 33804-2025肥料级腐植酸钾
- 2025至2030中国精酿啤酒行业深度产业运行态势及投资规划深度研究报告
- 2025年山东中考语文试卷真题解读及复习备考指导
- 糖尿病酮症酸中毒护理问题和措施讲课件
- 农村夜市活动方案
- 2025年福建省中考作文《未来总是甜的》写作指导及范文
- 2025年湖北高考政治试卷真题及答案详解(精校打印版)
- 中国PVB膜项目创业计划书
- 安徽交控集团财务有限公司招聘笔试题库2025
- 锡林郭勒苏能白音华发电有限公司招聘笔试题库2025
- 2024-2025学年度部编版二年级语文下学期期末试卷 (含答案)
评论
0/150
提交评论