南航双语矩阵论第一章习题答案2016年版.pdf_第1页
南航双语矩阵论第一章习题答案2016年版.pdf_第2页
南航双语矩阵论第一章习题答案2016年版.pdf_第3页
南航双语矩阵论第一章习题答案2016年版.pdf_第4页
南航双语矩阵论第一章习题答案2016年版.pdf_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 Solution Key (chapter 1) Exercise 2. The main point is to show that this set is not closed under multiplication. Take2S,2 22. But2S. If2S, then there are rational numbers a and b, such that 223ab.( It is clear that0a and0b .) This will lead to 22 423 6 2 ab ab The right hand is a rational number and the left hand side is an irrational number. This is impossible. Thus, S is not closed under multiplication. Hence, S is not a field. Exercise 7. zxyx )()()()(zxxyxx zxxyxx)()( z0y0 zy Exercise 12 It is a vector space. A1: A2:, Hence, A3:The existence of the zero element . The zero elementmust satisfy that for any, That is for any,. We obtain that the zero element is A4:The existence of additive inverse. For each,its additive inverse is, since . (Note thatis the zero element of) M1: M2: M3: 2 M4: Exercise 13. (a) No, it is not a subspace. Denote the set by S.Take 2 ( )p xxxS, 2 ( )q xxxS . Then ( )( )2p xq xxS. S is not closed under addition. Hence, S is not a subspace. (Or:The set S does not contain the zero polynomial, hence, is not a subspace.) (b) Denote the set by S. (b) Take 3 ( )1p xxS , 3 ( )1p xxS . Then( )( )2p xq xS. S is not closed under addition. Hence, S is not a subspace. (Or:The set S does not contain the zero polynomial, hence, is not a subspace.) (c) Yes, it is a subspace. Check that this set is closed under addition and scalar multiplication. (d) No, it is not a subspace. Denote the set by S. Take( )1p xxS ,( )1p xxS ,( )( )2p xq xS. S is not closed under addition. Hence, S is not a subspace. Exercise 15. (a) Yes, it is a subspace. Check that this set is closed under addition and scalar multiplication. (b) Yes, it is a subspace. Check that this set is closed under addition and scalar multiplication. (c) Denote the set by S. Take( )p xxS. But( 1) ( )p xxS . Thus, the set S is not closed under scalar multiplication. Hence, S is not a subspace. (d) Yes, it is a subspace. Check that this set is closed under addition and scalar multiplication. (e) Denote the set by S. Take( )1p xxS ( )1q xxS . But( )( )2p xq xxS. S is not closed under addition. Hence, S is not a subspace. Exercise 17. 3 Since 12 ,uv vv is spanfor eachi, all combinations of 12 ,u uurare also in 12 ,v vvsspan. Thus, 12 ,u uurspanis a subspace of 12 ,v vvsspan. Therefore, 12 dim(,)u uurspan 12 dim(,)v vvsspan. Exercise 19 By Taylor expansion formula ( ) 1 1 0 (1) ( )32(1) ! j n nj j f f xxx j 21 2(1)(2)2(1)(2)() 5 12(1) (1)(1)(1)2(1) 2! jn nnnnnj nxxxx j The coordinate vector is 2(1)(2)2(1)(2)() 5,2(1),2) 2! T nnnnnj n j ( Exercise 22 Use the definition of the transition matrix. 111 011 001 Exercise 25. (b) Let 12 (,)b bbnB . Then 12 (,)bbbnABAAA. IfABO, thenb0 i Afor1,2,in.( )biN Afor1,2,in. All linear combinations of 12 ,b bbnare also in( )N A. Thus,( )( )R BN A.( )R Bis a subspace of( )N A. If( )R Bis a subspace of( )N A, then for each columnbiof B, we must have b0 i A. Hence, 12 (,).bbbnABAAAO (b) By part (a), we know that( )R Bis a subspace of( )N A. Thus, 4 ( )dim( ( )dim( )r BR BN A. By the rank-nullity theorem, we obtain that ( )( )dim( )( )r Br AN Ar An Exercise 27 (a) Suppose that0xC. Then0)(xBA. Since the column vectors of A are linearly independent, we must have0xB. Since the column vectors of B are linearly independent, we must have0x. This shows that the column vectors of C are linearly independent. (b) TTT ABAB)( TT BA ,have linearly independent columns By part (a), T AB)(have linearly independent columns. Thus, AB have linearly independent rows. Exercise 29. Let,A BS. Then()T TT ABABAB, and()T T kAkAkA. S is closed under addition and scalar multiplication. Thus, S is a subspace of n n R Let,A BK. Then()() TTT ABABABAB , and()() TT kAkAkA . K is closed under addition and scalar multiplication. Thus, K is a subspace of n n R The proof of n n RSK . Let. n n AR Then 11 ()() 22 TT AAAAA. 1 () 2 T AAis symmetric and 1 () 2 T AAis anti-symmetric. This show that n n RSK . Next, we show that the sumSKis a direct sum. IfASK, then we have both T AAand T AA . This will imply thatAA . Thus, A must be the zero matrix. This proves that the sumSKis a direct sum. Exercise 32. Let ij Edenote the matrix whose( , )i jentry is 1, zero elsewhere. ij Fdenote the matrix whose( , )i jentry is1, zero elsewhere. For any(1) m n ijij AabC , where, ijij a bare real numbers, A can be written as 5 1111 nmnm ijijijij jiji Aa Eb F . This shows that the matrices,|1,2,1,2, ijij EFim jnforms a spanning set for m n C . If 1111 nmnm ijijijij jiji a Eb FO , then10 ijij abfor1,2,im, 1,2,jn. Thus, we must

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论