




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 ;(2)完全平方公式 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 ;(2)立方差公式 ;(3)三数和平方公式 ;(4)两数和立方公式 ;(5)两数差立方公式 对上面列出的五个公式,有兴趣的同学可以自己去证明例1 计算:例2 已知,求的值练 习1填空: (1)( ); (2) ; (3 ) 2选择题:(1)若是一个完全平方式,则等于 ( )(A) (B) (C) (D)(2)不论,为何实数,的值 ( ) (A)总是正数 (B)总是负数 (C)可以是零 (D)可以是正数也可以是负数2 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法1十字相乘法例1 分解因式: (1)x23x2; (2)x24x12; (3); (4) 解:(1)如图121,将二次项x2分解成图中的两个x的积,再将常数项2分解成1与2的乘积,而图中的对角线上的两个数乘积的和为3x,就是x23x2中的一次项,所以,有x23x2(x1)(x2)aybyxx图1242611图1231211图12212xx图121 说明:今后在分解与本例类似的二次三项式时,可以直接将图121中的两个x用1来表示(如图122所示)(2)由图123,得x24x12(x2)(x6)(3)由图124,得11xy图125 (4)xy(xy)1(x1) (y+1) (如图125所示)2提取公因式法与分组分解法例2 分解因式: (1); (2) (2)= =或 = = =3关于x的二次三项式ax2+bx+c(a0)的因式分解若关于x的方程的两个实数根是、,则二次三项式就可分解为.例3把下列关于x的二次多项式分解因式:(1); (2)练 习1选择题:多项式的一个因式为 ( )(A) (B) (C) (D)2分解因式:(1)x26x8; (2)8a3b3;(3)x22x1; (4)习题1分解因式:(1) ; (2); (3); (4)2在实数范围内因式分解:(1) ; (2); (3); (4)3三边,满足,试判定的形状4分解因式:x2x(a2a)答案 1.1.2乘法公式1(1) (2) (3)2(1)D (2)A1.2分解因式1 B 2(1)(x2)(x4) (2)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宁都钢质防火窗施工方案
- 架空建筑垃圾分类方案设计
- 中式建筑排版配色方案设计
- 在全县干部大会的主持词
- 地下室顶板渗漏处理方案
- 双层宴席厅建筑方案设计
- 2025年经济师初级考试 经济基础知识核心考点模拟试卷
- 贵州省茶产业发展现状研究
- 其他收入分享协议的注意事项
- 2025年北京市纪委市监委所属事业单位招聘8人笔试备考题库参考答案详解
- 物流公司驾驶员管理的规章制度
- 【MOOC】大学物理-电磁学-北京理工大学 中国大学慕课MOOC答案
- 35KV集电线路安全施工措施
- 机场监控施工方案
- 北京餐厨垃圾收运合同范本
- 压力容器使用单位安全员题库
- 3输变电工程施工质量验收统一表式(变电工程电气专业)-2024年版
- 大数据产业大数据应用技术创新与实践计划
- 动物疫病检测合同
- 2024-2029年中国汾酒行业供需分析及发展前景研究报告
- 装配式结构吊装施工计算书
评论
0/150
提交评论