已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CHAPTER 2 MATHEMATICS FOR MICROECONOMICS The problems in this chapter are primarily mathematical. They are intended to give students some practice with the concepts introduced in Chapter 2, but the problems in themselves offer few economic insights. Consequently, no commentary is provided. Results from some of the analytical problems are used in later chapters, however, and in those cases the student will be directed to here. Solutions 2.1 Substitution: 2 1 so yxfxyx= = x 0 = 2x 1 = x f 0.50.5,0.25x =, y = f = Note: . This is a local and global maximum. 20f = 2( . This can be shown most easily by 12)1212 ,2(2 )(2) ,)(2fxxxxx x =+f =. 2.11 More on Expected Value a. The tangent to g(x) at the point E(x) will have the form for all values of x and )(xgdxc+ )()(xEgxdEc=+. But, )()()()(xEgxdEcdxcExgE=+=+. b. Using the same procedure as before with instead of and vice versa, we have the following proof: The tangent to g(x) at the point E(x) will have the form for all values of x and )(xgdxc+ )()(xEgxdEc=+. Now, )()()()(xEgxdEcdxcExgE=+=+. c. Let dxdvvxxfduxFu=,),(),(1. Apply Equation 2.136. )()(0)()(1 ()(1 ( 0 0 0 xExEdxxxfxxFdxxF=+= This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. This may not be resold, copied, or distributed without the prior consent of the publisher. 6 Chapter 2: Mathematics for Microeconomics d. LHStxPdxxfdxxtf t dxxxf t dxxxfdxxxf tt xE RHS ttt t t = += )()()( 1 )( 1 )()( 1)( 0 e. 1. 1 2 22)( 1 2 1 3 = = x dxxdxxf 2. 2 1 2 1 3 1 2 22)()( = = x x dxxdxxfxF x xx 3. E(x) = = dxxF)(1 (1 1 1 1 2 = xdxx 4. t xE t xSince tt xE t ttFtxP )(1 , 1 1)( 1 )(1)( 2 2 2 = = Thus, Markovs inequality holds. f. 1. 1 9 1 3 )( 2 1 3 2 1 2 = xdx x dxxf 2. 4 5 12 116 12 1 3 )()( 2 1 4 2 1 3 = = xdx x dxxxfxE 3. 9 1 9 1 3 )01( 0 1 3 0 1 2 = xdx x xP 4. 20 ; 8 3 9 8 3 )( )( )( 2 2 =x x x AP AandxP Axf 5. 2 3 32 3 8 3 )()( 2 0 4 2 0 3 = xdx x dxAxxfAxE 6. Eliminating the lowest values for x should increase the expected value of the remaining values. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. This may not be resold, copied, or distributed without the prior consent of the publisher. 7 Chapter 2: Mathematics for Microeconomics 2.12 The Cobb-Douglas Function a. 1 1 12 f 0. xx = 2 1 12 f 0. x x = 11 2 11 f ( 1) 0, x2 is a convex function of x1 . c. Using equation 2.98, x x x x 1) ( ) ( 1) ( = f ff 2 2 2 2 2 1 2 22 2 2 2 2 1 2 12 11 = which is negative for + 1. x x ) (1 2 22 2 1 2.13 More on Variances and Covariances a. 22 2222 222 )()( )()()(2)()()(2)( )()(2()()( xExE xExExExExEExxEExE xExxExExExExVar = +=+= += b. )()()( )()()()()()()( )()()()( )()(),( yExExyE yExExEyEyExExyE yExExyEyxExyE yEyxExEyxCov = += += = c. (From part a.) 22 )()()(byaxEbyaxEbyaxVar= (From results of parts a. and b.) ),(2)()( )()()(2)()()(2)( )()()2( 22 22222222 22222 yxabCovyVarbxVara yEbyExabExEayEbxyabExEa ybExaEybaxbyxaE += += += m This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. This may not be resold, copied, or distributed without the prior consent of the publisher. Chapter 2: Mathematics for Microeconomics This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. This may not be resold, copied, or distributed without the prior consent of the publisher. 8 d. )()(5 .)(5 .)5 .5(.xEyExEyxE=+=+ Remember that if 2 random variables x and y are independent, then Cov(x, y) = 0 )( 5 . 0)(25.)(25.) 5 . 5(. xVar yVarxVaryxVar = +=+ If x and y characterize 2 different assets with the properties )var()var(),()(yxyExE=we have shown that the variance of a diversified portfolio is only half as large as for a portfolio invested in only one of the assets. 2.14 Concave and Quasiconcave Functions The proof is most easily accomplished through the use of the matrix algebra of quadratic forms. See, for example, Mas Colell et al., pp. 937-939. Intuitively, because concave functions lie below any tangent plane, their level curves must also be convex. But the converse is not true. Quasi-concave functions may exhibit “increasing returns to scale”; even th
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 居家头部护理方法
- 新视野游戏介绍
- 子宫内膜异位症治疗方案培训流程
- 公安面试题及答案解析(2025版)
- 2025年中国农业银行公务员录用考试银监财经类专业试卷
- (2025)党员领导干部纪律知识竞赛试题库与答案
- 企业行政文件归档与存储方案模板
- 仙游编外合同
- 2025至2030慢性肝衰竭急性期行业项目调研及市场前景预测评估报告
- 继续性合同和非继续性合同
- 菜鸟驿站转让合同范本
- 清贫教学课件
- 肥胖患者麻醉管理专家共识2023年版中国麻醉学指南与专家共识
- JJF1030-2023温度校准用恒温槽技术性能测试规范
- 【川教版】《生命 生态 安全》五上第17课《发明让生活更美好》课件
- 烘焙食品的健康诉求与功能化研究
- 安全生产检查及事故隐患的排查治理制度
- 2021年北京市成考(专升本)大学政治考试真题含解析
- 东方市生活垃圾焚烧炉渣综合利用项目 环评报告
- 教职工师德“一票否决制”实施办法
- 《法国地理》课件
评论
0/150
提交评论