




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 7 抛物线的简单几何性质 本资料为 WoRD 文档,请点击下载地址下载全文下载地址 抛物线的简单几何性质 (一)教学目标: 1掌握抛物线的范围、对称性、顶点、离心率等几何性质; 2能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形; 3在对抛物线几何性质的讨论中,注意数与形的结合与转化 . (二)教学重点:抛物线的几何性质及其运用 (三)教学难点:抛物线几何性质的运用 (四)教学过程: 一、复习引入:(学生回顾并填表格) 1抛物线定义:平面内与一个定点 F 和一条定直线的距离相等的点的轨迹叫做抛物线 .定点 F 叫做抛物线的焦点,定直线叫做抛物线的准线 . 图形 方程 焦点 准线 2 / 7 2抛物线的标准方程: 相同点: (1)抛物线都过原点; (2)对称轴为坐标轴; (3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称它们到原点的距离都等于一次项系数绝对值的,即 . 不同点: (1)图形关于 x 轴对称时, x 为一次项, y 为二次项,方程右端为、左端为;图形关于 y 轴对称时, x 为二次项, y为一次项,方程右端为,左端为 .( 2)开口方向在 x 轴(或y 轴)正向时,焦点在 x 轴(或 y 轴)的正半轴上,方程右端取正号;开口在 x 轴(或 y 轴)负向时,焦点在 x 轴(或y 轴)负半轴时,方程右端取负号 . 二、讲解新课: 类似研究双曲线的性质的过程,我们以为例来研究一下抛物线的简单几何性质: 1范围 因为 p 0,由方程可知,这条抛物线上的点 m 的坐标 (x,y)满足不等式 x0 ,所以这条抛物线在 y 轴的右侧;当 x 的值增大时, |y|也增大,这说明抛物线向右上方和右下方无限延伸 2对称性 以 y 代 y,方程不变,所以这条抛物线关于 x 轴对称,我们把抛物线的对称轴 叫做抛物线的轴 3顶点 3 / 7 抛物线和它的轴的交点叫做抛物线的顶点在方程中,当y=0时, x=0,因此抛物线的顶点就是坐标原点 4离心率 抛物线上的点 m 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用 e 表示由抛物线的定义可知, e=1 对于其它几种形式的方程,列表如下:(学生通过对照完成下表) 标准方程图形顶点对称轴焦点准线离心率 注意强调的几何意义:是焦点到准线的距离 . 思考:抛物线有没有渐近线?(体会抛物线与双曲线的区别) 三、例题讲解: 例 1 已知抛物 线关于 x 轴为对称,它的顶点在坐标原点,并且经过点,求它的标准方程,并用描点法画出图形 分析:首先由已知点坐标代入方程,求参数 p 解:由题意,可设抛物线方程为,因为它过点, 所以,即 因此,所求的抛物线方程为 将已知方程变形为,根据计算抛物线在的范围内几个点的坐标,得 4 / 7 x01234 描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分 点评:在本题的画图过程中,如果描出抛物线上更多的点,可 以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线 例 2 斜率为 1 的直线经过抛物线 y2=4x的焦点,与抛物线交于两点 A、 B,求线段 AB的长 . 解法 1:如图所示,由抛物线的标准方程可知,焦点 F( 1,0),准线方程 x= 1. 由题可知,直线 AB的方程为 y=x 1 代入抛物线方程 y2=4x,整理得: x2 6x+1=0 解上述方程得 x1=3+2,x2=3 2 分别代入直线方程得 y1=2+2,y2=2 2 即 A、 B 的坐标分别为( 3+2, 2+2),( 3 2, 2 2) |AB|= 解法 2:设 A(x1,y1)、 B(x2,y2),则 x1+x2=6,x1x2=1 |AB|=|x1 x2| 解法 3:设 A( x1,y1)、 B(x2,y2),由抛物线定义可知, 5 / 7 |AF|等于点 A 到准线 x= 1 的距离 |AA| 即 |AF|=|AA|=x1+1 同理 |BF|=|BB|=x2+1 |AB|=|AF|+|BF|=x1+x2+2=8 点评:解法 2 是利用韦达定理根与系数的关系,设而不求,是解析几何中求弦长的一种普遍适用的方法; 解法 3 充分利用了抛物线的定义,解法简洁,值得引起重视。 变式训练:过抛物线的焦点作直线,交抛物线于 ,两点,若,求。 解:,。 点评:由以上例 2 以及变式训练可总结出焦点弦弦长:或。 四、达标练习: 1过抛物线的焦点作直线交抛物线于,两点,如果,那么 =() ( A) 10( B) 8( c) 6( D) 4 2已知为抛物线上一动点,为抛物线的焦点,定点,则的最小值为() ( A) 3( B) 4( c) 5( D) 6 3过抛物线焦点的直线它交于、两点,则弦的中点的轨迹方程是 _ 4.定长为的线段的端点、在 抛物线上移动,求中点到轴距离的最小值,并求出此时中点的坐标 . 6 / 7 参考答案: ,m到轴距离的最小值为 . 五、小结:抛物线的离心率、焦点、顶点、对称轴、准线、中心等 . 六、课后作业: 1根据下列条件,求抛物线的方程,并画出草图 ( 1)顶点在原点,对称轴是 x 轴,顶点到焦点的距离等于8 ( 2)顶点在原点,焦点在 y 轴上,且过 P( 4, 2)点 ( 3)顶点在原点,焦点在 y 轴上,其上点 P( m, 3)到焦点距离为 5 2过抛物线焦点 F 的直线与抛物线交于 A、 B 两点,若 A、B 在准线上的射影是 A2、 B2,则 A 2FB2等于 . 3抛物线顶点在原点,以坐标轴为对称轴,过焦点且与 y轴垂直的弦长为 16,求抛物线方程 4以椭圆的右焦点, F 为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025如何编写租赁合同
- 5.1 方程说课稿2024-2025学年人教版数学七年级上册
- Unit 3 Sports and Fitness 单元整体教学设计-2024-2025学年高中英语人教版(2019)必修第一册
- 2023八年级英语下册 Unit 8 Have you read Treasure Island yet Section A 第2课时 (3a~4c)说课稿 (新版)人教新目标版
- 2025年车辆运输与车辆检测认证服务合同模板
- 旅游代收代付服务合作协议
- 高端社区便利店特许经营承包协议
- 《三份教育培训机构加盟合同条件比较与市场布局》
- 个人教育培训机构投资连带责任保证贷款协议
- 南京XX科技公司向南京XX小额贷款公司借款合同
- ISO 22000-2018食品质量管理体系-食品链中各类组织的要求(2023-雷泽佳译)
- 卡巴斯基应急响应指南
- 理财规划大赛优秀作品范例(一)
- 2023年四川能投筠连电力招聘笔试参考题库附带答案详解
- 护理管理组织结构与设计
- 静配中心清洁消毒考核试题
- 一级烟草专卖管理师理论考试题库(含答案)
- 小学数学《分数除法》50道应用题包含答案
- 碳捕集、利用与封存技术课件
- 化工试生产总结报告
- 复句与单句的辨析课件
评论
0/150
提交评论