钢结构的连接_第1页
钢结构的连接_第2页
钢结构的连接_第3页
钢结构的连接_第4页
钢结构的连接_第5页
已阅读5页,还剩136页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,第三章,钢结构的连接,大纲要求,1.了解钢结构连接的种类及各自的特点;2.了解焊接连接的工作性能,掌握焊接连接的计算方法及构造要求;3.了解焊接应力和焊接变形产生的原因及其对结构工作的影响;4.了解螺栓连接的工作性能,掌握螺栓连接的计算和构造要求。,一、焊缝连接,3.1钢结构的连接方法,优点:构造简单,任何形式的构件都可直接相连;用料经济,不削弱截面;制作加工方便,可实现自动化操作;连接的密闭性好结构刚度大。,缺点:在焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆;焊接残余应力和残余变形使受压构件承载力降低;焊接结构对裂纹很敏感,局部裂纹一旦发生,就容易扩展到整体,低温冷脆问题较为突出。,三、螺栓连接,优点:连接刚度大,传力可靠;,分为:普通螺栓连接高强度螺栓连接,二、铆钉连接,缺点:对施工技术要求很高,劳动强度大,施工条件差,施工速度慢。,一、钢结构常用焊接方法,1.手工电弧焊,用手工操纵焊条、用电弧作为热源的焊接方法,3.2焊接方法和焊接连接形式,焊条的选择:,焊条应与焊件钢材相适应。,Q390、Q420钢选择E55型焊条(E5500-5518),Q345钢选择E50型焊条(E5000-5048),Q235钢选择E43型焊条(E4300-E4328),焊条的表示方法:,E焊条(Electrode),第1、2位数字为熔融金属的最小抗拉强度(kgf/mm2),第3、4适用焊接位置、电流及药皮的类型。,不同钢种的钢材焊接,宜采用与低强度钢材相适应的焊条。,缺点:质量波动大,要求焊工等级高,劳动强度大,效率低。,优点:方便,特别在高空和野外作业,小型焊接;,手工电弧焊优、缺点,2.埋弧焊(自动或半自动),利用在焊剂层下燃烧的电弧进行焊接的方法,焊丝的选择应与焊件等强度。优点:自动化程度高,焊接速度快,劳动强度低,焊接质量好。缺点:设备投资大,施工位置受限等。,3.气体保护焊,优、缺点:优点:焊接速度快,焊接质量好。缺点:施工条件受限制等。,1.焊缝形式,(1)对接焊缝:焊缝位于被连接板件或其中一个板件的平面内,(2)角焊缝:焊缝位于两个被连接板件的边缘位置,二、焊接连接形式和焊缝形式,2.焊接连接形式(按被连接构件的相对位置),对接链接,采用拼接盖板的对接链接,搭接连接,T形链接,角部连接,3.焊缝位置,三、焊缝缺陷及焊缝质量检查,1.焊缝缺陷,裂纹,焊瘤,烧穿,弧坑,气孔,夹渣,咬边,未熔合,未焊透,2.焊缝质量检查,外观检查:检查外观缺陷和几何尺寸;内部无损检验:检验内部缺陷。,内部检验主要采用超声波,有时还用磁粉检验荧光检验等辅助检验方法。还可以采用X射线或射线透照或拍片。,钢结构工程施工及验收规范规定(不要求),焊缝按其检验方法和质量要求分为一级、二级和三级。,三级焊缝只要求对全部焊缝作外观检查且符合三级质量标准;,一、二级焊缝除外观检查外,尚要求一定数量的超声波检验并符合相应级别的质量标准。,钢结构设计规范(GB50017-2003)中,对焊缝质量等级的选用有如下规定:,(1)需要进行疲劳计算的构件中,垂直于作用力方向的横向对接焊缝受拉时应为一级,受压时应为二级。,3.焊缝质量等级及选用,(2)在不需要进行疲劳计算的构件中,凡要求与母材等强的受拉对接焊缝应不低于二级;受压时宜为二级。,()重级工作制和起重量的中级工作制吊车梁的腹板与上翼缘板之间以及吊车桁架上弦杆与节点板之间的形接头焊透的对接与角接组合焊缝,不应低于二级。,()角焊缝质量等级一般为三级,直接承受动力荷载且需要验算疲劳和起重量的中级工作制吊车梁的角焊缝的外观质量应符合二级。,4.焊缝代号,1、角焊缝的形式:,一、角焊缝的形式和受力分析,3.3角焊缝的构造与计算,直角角焊缝、斜角角焊缝,(1)直角角焊缝,(2)斜角角焊缝,对于135o或6mm时,hf,maxt-(12)mm;,2、最小焊脚尺寸hf,min,为了避免在焊缝金属中由于冷却速度快而产生淬硬组织,导致母材开裂,hf,min应满足以下要求:,式中:t2-较厚焊件厚度另:对于埋弧自动焊hf,min可减去1mm;对于T型连接单面角焊缝hf,min应加上1mm;当t24mm时,hf,min=t2,3.侧面角焊缝的最大计算长度,侧面角焊缝在弹性工作阶段沿长度方向受力不均,两端大而中间小。焊缝长度越长,应力集中系数越大。如果焊缝长度不是太大,焊缝两端达到屈服强度后,继续加载,应力会渐趋均匀;当焊缝长度达到一定的长度后,可能破坏首先发生在焊缝两端,故:,注:1、当实际长度大于以上值时,计算时不予考虑;2、当内力沿侧焊缝全长分布时,不受上式限制。,4.角焊缝的最小计算长度,对于焊脚尺寸大而长度小的焊缝,焊件局部加热严重且起落弧坑相距太近,以及可能产生缺陷,使焊缝不可靠。故为了使焊缝具有一定的承载力,规范规定:,5.搭接连接的构造要求,当板件端部仅采用两条侧面角焊缝连接时:A、为了避免应力传递的过分弯折而使构件中应力不均,规范规定:,B、为了避免焊缝横向收缩时引起板件的拱曲太大,规范规定:,D.在搭接连接中,搭接长度不得小于焊件较小厚度的5倍,且不得小于25mm。,C.当角焊缝的端部位于构件转角处时,应作2hf的绕角焊,且转角处必须连续施焊。,三、直角角焊缝的强度计算公式,1、试验表明,直角角焊缝的破坏常发生在喉部,故通常将45o截面作为计算截面,作用在该截面上的应力如下图所示:,2、实际上计算截面的各应力分量的计算比较繁难,为了简化计算,规范假定:焊缝在有效截面处破坏,且各应力分量满足以下折算应力公式:,3、由于我国规范给定的角焊缝强度设计值,是根据抗剪条件确定的故上式又可表达为:,4、直角角焊缝的强度计算公式:,将34、35式,代入33式得:,式36即为,规范给定的角焊缝强度计算通用公式f正面角焊缝强度增大系数;静载时取1.22,动载时取1.0。,对于正面角焊缝,f=0,由36式得:,对于侧面角焊缝,f=0,由36式得:,以上各式中:he=0.7hf;lw角焊缝计算长度,考虑起灭弧缺陷时,每条焊缝取其实际长度减去2hf。,四、各种受力状态下的直角角焊缝连接计算,1、轴心力作用下,(1)轴心力作用下的盖板对接连接:,A、仅采用侧面角焊缝连接:,B、采用三面围焊连接:,(2)T形角焊缝连接,代入式3-6验算焊缝强度,即:,(3)角钢角焊缝连接,A、仅采用侧面角焊缝连接,由力及力矩平衡得:,故:,对于校核问题:,对于设计问题:,B、采用三面围焊,由力及力矩平衡得:,余下的问题同情况A,即:,对于校核问题:,对于设计问题:,C、采用L形围焊,代入下式3-20,3-21得:,对于设计问题:,2、N、M、V共同作用下,(1)偏心轴力作用下角焊缝强度计算,(2)V、M共同作用下焊缝强度计算,对于A点:,式中:Iw全部焊缝有效截面对中和轴的惯性矩;h1两翼缘焊缝最外侧间的距离。,对于B点:,强度验算公式:,式中:h2、lw,2腹板焊缝的计算长度;he,2腹板焊缝截面有效高度。,假定:A、被连接件绝对刚性,焊缝为弹性,即:T作用下被连接件有绕焊缝形心旋转的趋势;B、T作用下焊缝群上任意点的应力方向垂直于该点与焊缝形心的连线,且大小与r成正比;C、在V作用下,焊缝群上的应力均匀分布。,3、T、V共同作用下,将F向焊缝群形心简化得:V=FT=F(e1+e2),故:该连接的设计控制点为A点和A点,T作用下A点应力:,将其沿x轴和y轴分解:,剪力V作用下,A点应力:,A点垂直于焊缝长度方向的应力为:,A点平行于焊缝长度方向的应力为:,强度验算公式:,T、V联合作用下的例题,五、斜角角焊缝的计算,1、由于斜角角焊缝的研究不够充分,为简化计算,规范规定:对于两焊脚边夹角60o135o的斜T形连接,其斜角角焊缝采用与直角角焊缝相同的计算公式,且统一取f=1.0。,2、斜角角焊缝的计算厚度hei,由几何关系得其通式为:,式中:b、b1和b25mm,说明:A.b1和b21.5mm时,可取b1、b2=0B.b1和b25mm时,应如图“B”方式处理,且使b5mm。,1、对接焊缝的坡口形式:,一、对接焊缝的构造,3.4对接焊缝的构造与计算,对接焊缝的焊件常做坡口,坡口形式与板厚和施工条件有关。,t-焊件厚度,(1)当:t15d0(d0为孔径)时,连接进入弹塑性工作状态后,即使内力重新分布,各个螺栓内力也难以均匀,端部螺栓首先破坏,然后依次破坏。由试验可得连接的抗剪强度折减系数与l1/d0的关系曲线。,故,连接所需栓数:,普通螺栓群轴心力作用下,为了防止板件被拉断尚应进行板件的净截面验算。,拼接板的危险截面为2-2截面:,A、螺栓采用并列排列时:,主板的危险截面为1-1截面:,B、螺栓采用错列排列时:,主板的危险截面为1-1和1-1截面:,拼接板的危险截面为2-2和2-2截面:,2、普通螺栓群偏心力作用下抗剪计算,F作用下每个螺栓受力:,T作用下连接按弹性设计,其假定为:(1)连接板件绝对刚性,螺栓为弹性;(2)T作用下连接板件绕栓群形心转动,各螺栓剪力与其至形心距离呈线形关系,方向与ri垂直。,显然,T作用下1号螺栓所受剪力最大(r1最大)。,由假定(2)得,由式3-39得:,由力的平衡条件得:,将式3-40代入式3-38得:,将N1T沿坐标轴分解得:,由此可得螺栓1的强度验算公式为:,另外,当螺栓布置比较狭长(如y13x1)时,可进行如下简化计算:令:xi=0,则N1Ty=0,(一)普通螺栓抗拉连接的工作性能,三、普通螺栓的抗拉连接,抗拉螺栓连接在外力作用下,连接板件接触面有脱开趋势,螺栓杆受杆轴方向拉力作用,以栓杆被拉断为其破坏形式。,(二)单个普通螺栓的抗拉承载力设计值,式中:Ae-螺栓的有效截面面积;de-螺栓的有效直径;ftb-螺栓的抗拉强度设计值。,公式的两点说明:,(1)螺栓的有效截面面积因栓杆上的螺纹为斜方向的,所以公式取的是有效直径de而不是净直径dn,现行国家标准取:,(2)螺栓垂直连接件的刚度对螺栓抗拉承载力的影响,A、螺栓受拉时,一般是通过与螺杆垂直的板件传递,即螺杆并非轴心受拉,当连接板件发生变形时,螺栓有被撬开的趋势(杠杆作用),使螺杆中的拉力增加(撬力Q)并产生弯曲现象。连接件刚度越小撬力越大。试验证明影响撬力的因素较多,其大小难以确定,规范采取简化计算的方法,取ftb=0.8f(f螺栓钢材的抗拉强度设计值)来考虑其影响。,B、在构造上可以通过加强连接件的刚度的方法,来减小杠杆作用引起的撬力,如设加劲肋,可以减小甚至消除撬力的影响。,(三)普通螺栓群的轴拉设计,一般假定每个螺栓均匀受力,因此,连接所需的螺栓数为:,(四)普通螺栓群在弯炬作用下,M作用下螺栓连接按弹性设计,其假定为:(1)连接板件绝对刚性,螺栓为弹性;(2)螺栓群的中和轴位于最下排螺栓的形心处,各螺栓所受拉力与其至中和轴的距离呈正比。,显然1号螺栓在M作用下所受拉力最大,由力学及假定可得:,由式3-52得:,将式3-54代入式3-53得:,因此,设计时只要满足下式,即可:,(五)普通螺栓群在偏心拉力作用下,小偏心力作用下普通螺栓连接,,小偏心的条件是,大偏心力作用下普通螺栓连接,,近似并安全的取中和轴位于最下排螺栓O处,列弯矩平衡方程,可求得,四、普通螺栓拉、剪联合作用,因此:,2、由试验可知,兼受剪力和拉力的螺杆,其承载力无量纲关系曲线近似为一“四分之一圆”。,1、普通螺栓在拉力和剪力的共同作用下,可能出现两种破坏形式:螺杆受剪兼受拉破坏、孔壁的承压破坏;,3、计算时,假定剪力由螺栓群均匀承担,拉力由受力情况确定。,规范规定:普通螺栓拉、剪联合作用为了防止螺杆受剪兼受拉破坏,应满足:,为了防止孔壁的承压破坏,应满足:,另外,拉力和剪力共同作用下的普通螺栓连接,当有承托承担全部剪力时,螺栓群按受拉连接计算。,承托与柱翼缘的连接角焊缝按下式计算:,式中:考虑剪力对角焊缝偏心影响的增大系数,一般取=1.251.35;其余符号同前。,38高强度螺栓连接计算,一、高强度螺栓的工作性能及单栓承载力按受力特征的不同高强度螺栓分为两类:摩擦型高强度螺栓通过板件间摩擦力传递内力,破坏准则为克服摩擦力;承压型高强度螺栓受力特征与普通螺栓类似。1、高强度螺栓预拉力的建立方法通过拧紧螺帽的方法,螺帽的紧固方法:A、转角法施工方法:初拧用普通扳手拧至不动,使板件贴紧密;,终拧初拧基础上用长扳手或电动扳手再拧过一定的角度,一般为120o180o完成终拧。,特点:预拉力的建立简单、有效,但要防止欠拧、漏拧和超拧;B、扭矩法施工方法:初拧用力矩扳手拧至终拧力矩的30%50%,使板件贴紧密;终拧初拧基础上,按100%设计终拧力矩拧紧。特点:简单、易实施,但得到的预拉力误差较大。,C、扭断螺栓杆尾部法(扭剪型高强度螺栓),C、扭断螺栓杆尾部法(扭剪型高强度螺栓),施工方法:初拧拧至终拧力矩的60%80%;终拧初拧基础上,以扭断螺栓杆尾部为准。特点:施工简单、技术要求低易实施、质量易保证等高强度螺栓的施工要求:由于高强度螺栓的承载力很大程度上取决于螺栓杆的预拉力,因此施工要求较严格:1)终拧力矩偏差不应大于10%;2)如发现欠、漏和超拧螺栓应更换;3)拧固顺序先主后次,且当天安装,当天终拧完。如工字型梁为:上翼缘下翼缘腹板。,2、高强度螺栓预拉力的确定,高强度螺栓预拉力是根据螺栓杆的有效抗拉强度确定的,并考虑了以下修正系数:考虑材料的不均匀性的折减系数0.9;为防止施工时超张拉导致螺杆破坏的折减系数0.9;考虑拧紧螺帽时,螺栓杆上产生的剪力对抗拉强度的降低除以系数1.2。附加安全系数0.9。因此,预拉力:,Ae螺纹处有效截面积;fu螺栓热处理后的最抵抗拉强度;8.8级,取fu=830N/mm2,10.9级,取fu=1040N/mm2,3、高强度螺栓摩擦面抗滑移系数,摩擦型高强度螺栓是通过板件间摩擦力传递内力的,而摩擦力的大小取决于板件间的挤压力(P)和板件间的抗滑移系数;板件间的抗滑移系数与接触面的处理方法和构件钢号有关,其大小随板件间的挤压力的减小而减小;,规范给出了不同钢材在不同接触面的处理方法下的抗滑移系数,如下表,4、高强度螺栓抗剪连接的工作性能和单栓承载力,(1)抗剪连接工作性能受力过程与普通螺栓相似,分为四个阶段:摩擦传力的弹性阶段、滑移阶段、栓杆传力的弹性阶段、弹塑性阶段。但比较两条N曲线可知,由于高强度螺栓因连接件间存在很大的摩擦力,故其第一个阶段远远大于普通螺栓。,A、对于高强度螺栓摩擦型连接,其破坏准则为板件发生相对滑移,因此其极限状态为1点而不是4点,所以1点的承载力即为一个高强度螺栓摩擦型连接的抗剪承载力:,式中:0.9抗力分项系数R的倒数(R=1.111);nf传力摩擦面数目;-摩擦面抗滑移系数;P预拉力设计值.,(2)、抗剪连接单栓承载力,B、对于高强度螺栓承压型抗剪连接,允许接触面发生相对滑移,破坏准则为连接达到其极限状态4点,所以高强度螺栓承压型连接的单栓抗剪承载力计算方法与普通螺栓相同。,N,O,高强度螺栓,普通螺栓,单栓抗剪承载力:,抗剪承载力:,承压承载力:,5、高强Cf度螺栓抗拉连接工作性能和单栓承载力,螺栓安装完毕后,当外拉力N=0时,螺栓只受到预紧力P作用,板叠受到压力C作用,P=C,螺栓伸长,板叠压缩;当外拉力为Nt时,板件有被拉开趋势,板件间压力C减小为Cf,C=C-Cf,栓杆拉力P增加为Pf,P=PfP,且有Pf=Nt+Cf,变形协调条件为:,Ab栓杆截面面积;Ap板件挤压面面积;板叠厚度。,由此式可得,下面考察Nt取不同值时Pf和Cf的变化,当Nt=0.8P时,当Nt=1.1P时,显然栓杆的拉力增加不大。另外,试验证明,当栓杆的外加拉力大于P时,卸载后螺栓杆的预拉力将减小,即发生松弛现象。但当Nt不大于0.8P时,则无松弛现象,这时Pf=1.07P,可认为螺杆的预拉力不变,且连接板件间有一定的挤压力保持紧密接触,所以现行规范规定:,A、摩擦型高强度螺栓的单栓抗拉承载力为:,上式未考虑橇力的影响,当考虑橇力影响时,螺栓杆的拉力Pf与Nt的关系曲线如图:Nt0.5P时,橇力Q=0;Nt0.5P后,橇力Q出现,增加速度先慢后快。橇力Q的存在导致连接的极限承载力由Nu降至Nu。所以,如设计时不考虑橇力的影响,应使Nt0.5P或增加连接板件的刚度(如设加劲肋)。,B、承压型高强度螺栓的单栓抗拉承载力,因其破坏准则为螺栓杆被拉断,故计算方法与普通螺栓相同,即:,式中:Ae-螺栓杆的有效截面面积;de-螺栓杆的有效直径;ftb高强度螺栓的抗拉强度设计值。上式的计算结果与0.8P相差不多。,(1)高强度螺栓摩擦型连接尽管当NtP时,栓杆的预拉力变化不大,但由于随Nt的增大而减小,且随Nt的增大板件间的挤压力减小,故连接的抗剪能力下降。规范规定在V和N共同作用下应满足下式:,6、高强度螺栓连接在拉力和剪力共同作用下的工作性能和单栓承载力,(2)高强度螺栓承压型连接,对于高强度螺栓承压型连接在剪力和拉力共同作用下计算方法与普通螺栓相同。,为了防止孔壁的承压破坏,应满足:,系数1.2是考虑由于外拉力的存在导致高强度螺栓的承压承载力降低的修正系数。,二、高强度螺栓群的抗剪计算,1、轴心力作用假定各螺栓受力均匀,故所需螺栓数:,对于摩擦型连接:,对于承压型连接:,高强度螺栓群轴心力作用下,为了防止板件被拉断尚应进行板件的净截面验算.,A、高强度螺栓摩擦型连接,主板的危险截面为1-1截面。,考虑孔前传力50%得:,1-1截面的内力为:,拼接板的危险截面为2-2截面。,考虑孔前传力50%得:,2-2截面的内力为:,B、高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论