已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七届大学生数学建模竞赛2013.05.17-2013.05.22主办: 东南大学教务处承办: 东南大学数学系 东南大学数学建模竞赛组委会论文选题及题目: A 奖学金评定问题 参赛队员信息:队员1队员2队员3姓名刘海波仇常慧莫宇宸院系仪科自动化公卫手机158510400801585186928118961950801奖学金评定问题模型摘要现行的奖学金评定制度多种多样,但并不是每一种都很科学合理;题目要求用至少三种模型解决问题,因此本文基于不同的计算权重的算法,建立了四种模型:简单加权平均值模型、标准化模型、层次分析模型以及模糊层次分析模型。逐步提高了权重算法的准确性以及考虑因素的完备性,并借助C+、matlab、excel等软件解决了问题。首先,我们对数据进行了预处理。将除任选课以及人文课之外的科目有低于60分的同学淘汰,留下了40名同学。然后我们采用偏大型柯西分布和和对数函数构造了一个隶属函数:将任选课与人文课的等级评价转化为百分制。在用AHP和FAHP建模的时候,由于每个同学的任选课与人文课的科目不尽相同,这对计算权重造成了很大的麻烦,为了简化计算,我们采用了补偿的方法:将每位同学已修的任选课和人文课的平均分作为这位同学未修课程的得分,因为平均分在一定程度上可以表示此学生的学习能力。模型一(简单加权平均值模型):此模型将基础课、专业课、必选课以及选修课的权重看作是一样的,以学分比重作为权值来计算平均分,然后借助C+计算平均成绩,借助EXCEL软件排序得到前10%的学生。模型二(标准化模型):此模型考虑到了课程的难易程度对课程权值的影响,用标准化的方法将百分制的分值转化为01,使得分数域相同,这有效增强了其可比性,然后借助EXCEL软件计算排序得到前10%的学生。模型三(层次分析模型):此模型将课程性质、学时和学分都看做方案层,课程权值视为目标层,建立判断矩阵,将课程性质、学时、学分这些因素对目标层的影响量化,运用MATLAB分析计算出权值向量,进而得到前10%的学生。结果为:70,30,86,2,20,75,60,84,64,72模型四(模糊层次分析法):此模型有效地避免了层次分析法中建立判断矩阵时的主观因素以及一致性检验时的繁琐,相比较层次分析法更加严谨,用模糊一致矩阵量化各因素的影响,然后代入公式求得权值向量,进而运用MATLAB求得前10%的学生。最终结果为:70,30,86,75,60,2,17,64,20,72关键词:奖学金评定问题,权值,隶属函数、简单加权平均值,标准化模型,层次分析模型,模糊层次分析模型 目录一、问题重述4二、问题分析4 2.1隶属函数求解4 2.2模型求解公式5三、模型的假设5四、定义与符号说明5五、模型的建立与求解51模型16 5.1.1建立模型及模型求解 62模型27 5.2.1建立模型 7 5.2.1模型求解 73. 模型38 5.3.1建立层次结构模型 8 5.3.2构造成对比较矩阵 8 5.3.3一致性检验及层次排序 9 5.3.4计算课程权重排序 9 5.3.5数据处理及模型求解 94. 模型410 5.4.1建立层次结构模型 10 5.4.2建立模糊一致判断矩阵 11 5.4.3计算课程权重排序 11 5.4.4数据处理及模型求解 12六、模型的评价与推广 13 6.1模型的优缺点13 6.2最终结果比较13 6.3建议与推广13参考文献14 附录 15一、问题重述几乎学校的每个院系每年都会评定学生奖学金。设立奖学金的目的是鼓励学生学习期间德智体全面发展。其中,年度的学习成绩是奖学金评定的主要依据之一,因此,如何根据学生本年度的各门课成绩来合理衡量学生很有必要。附件1是该学院某年级105名学生全年的学习情况。请你们队根据附件信息,综合考虑各门课程,至少用3到4种方法将成绩最优秀的10%的同学评选出来,作为进一步奖学金评定的候选人,并比较这些方法的优劣。你们队的论文不应超过15页。论文应明确说明你们队是如何考虑课程性质、学时、学分、成绩等因素的 ,以及你们队的主要结果及对该问题的建议。二、问题分析 2.1隶属函数求解在初始数据中,任选课和人文课是使用等级表示的,我们用了隶属函数法来将等级转化为百分制。偏大型柯西分布隶属函数:我们规定A,B,C,D四个等级相应的值为5,4,3,2。当等级为A时,隶属度为1,即x=5,f(5)=1;等级为C时,隶属度为0.8,即x=3,f(3)=0.8;等级为E(此处没有该类型评价,出于考虑问题方便使用)时,隶属度为0.01,即x=1,f(1)=0.01。计算可得。因而可得:画出隶属函数图像:根据图像我们取如下函数值:f(2)=0.4744,f(2.3)=0.6153,f(3.6)=0.8714,f(4.6)=0.9674,即:A=96.74,B=87.14,C=61.53,D=47.44。 2.2模型求解公式 我们用到了四种模型来求解权重,代数法的计算公式为:单科分数*单科学分总学分;标准化模型计算公式为:平均成绩=某科成绩-最低分最高分-最低分;层次分析模型和模糊层次分析模型的权重计算公式为:综合成绩=i=121(学分*成绩*学时比重*课程性质)总学分 最后用权重向量乘以成绩矩阵就可以得到关于综合成绩的矩阵。三、模型假设1假设参评人不会以任何手段来获取评委的特殊照顾,仅以成绩做为参考凭证。2假设所有参评人所获得的学分为准确,全面,真实。3假设该评定流程是按严格正规的官方流程进行。4奖学金评判标准除了受体中所给因素影响外不再受其他条件影响。5假设未修的任选课和人文课的成绩为该学生已修任选课和人文课的平均分。四、符号说明表示隶属函数的参数;x :学生的某科的成绩max: 代表每科的最高分min:代表每科的最低分 i,n:代表科目数X:表标准化后的成绩W:代表权重向量l:比较判断矩阵的特征值lmax:最大特征向量CI:一致性指标CR:一致性比率RI:平均随机一致性指标R: 模糊一致矩阵A: 模糊层次中的因素r: 模糊层次中的数量标度w:模糊层次中的各因素的权重五、模型建立与求解方法一:简单加权平均值模型对于综合成绩的评定,我们假设基础课、专业课、必选课以及选修课的权重是一样的,奖学金评定的标准是学校培养目标的具体化,对学生全面发展具有导向作用。没有一门课程是可以被忽视的。为了更加直接的比较出每位同学的综合成绩,我们没有将分数向绩点来转化,而是直接用代入分数的方法来计算。这样得到的结果一般不会出现相同成绩的两位同学,有利于我们很直观的选出前10%的同学,较具有科学性。综合成绩的计算取决于实际考试分数和学分2个因素。计算学分成绩时,把学分在该学年所取得的实际总学分中的比重作为权重,对每门科目进行加权得出一个加权成绩,我们认为学分在奖学金评定模型中的作用基本合理,问题应集中在实际考试分数上。所用公式:单科分数*单科学分总学分5.1.1建立模型及模型求解1、 由题目描述可知,任选课和人文课的成绩是以的等级的形式呈现的,所以我们通过上面的方法将其分数化得:A=96.74、B=87.14、C=61.53、D=47.44。2、 然后我们将符合条件(除选修课外无不及格科目)的同学筛选出来,共剩下40位同学。3、 接下来我们通过计算机来计算得到每位同学的综合成绩,c+关键代码见附录.4、 最后我们应用excel自带的排序功能排序得到综合成绩前10%的同学。得到如下表的综合成绩排名:表1-1学生序号综合成绩学生序号综合成绩7084.07114478.93053082.4538178.75738681.9811878.71377581.69478.59415180.90826378.51216080.87565378.3067280.86799378.0758080.567477.84149980.40156277.80611280.32729177.77246480.1817977.49623380.15741077.238479.91631377.06082079.77699676.97447279.41822976.71641779.37268176.56427379.33916976.26265479.029210375.37659279.02022275.04632779.0147874.1291根据上表,得到前十名学生序号为:70,30,86,75,51,60,2,80,99,12.方法二:标准化模型奖学金评定的公平性在整个评定过程中必须放在首要位置。但是由于各科老师的给分习惯的差异以及任选课和人文课采取等级评分制,使得在奖学金评定时计算学生成绩会出现诸多不便,如等级A,B,C,D怎么算才是相对公平的。所以如何减小这些影响评定公平性的因素是我们必须认真解决的问题。首先,考虑到每位老师给分习惯的不同,我们考虑极值标准化的方法,将百分制的分值转化为01,使得分数域相同,这有效增强了其可比性。5.2.1建立模型公式:X=x-minmax-min;Y=averageXi5.2.2模型求解1.利用Excel中的Min和Max函数将每科的最高分max和最低分min找出;2.极值标准化公式X=x-minmax-min,其中x为学生的某科的成绩;3.将归一化后所得的数据以学生为单位,计算出每位学生的平均成绩;4.对最终计算得出的平均成绩按降序进行排序,筛选出前十名的同学最终得到如下表格表2-1 成绩排名学号总和平均值学号总和平均值7012.3800.652539.3580.5203010.6260.6251810.3910.5207511.4340.60219.8180.5173311.3200.596749.1440.5088611.2630.5936210.1340.507210.5690.587129.9320.4975111.4470.572919.4100.4958411.3850.569108.8680.4936010.8020.56949.3200.4912010.7680.567968.7700.4878010.7270.565448.7650.487729.8520.547139.2190.4857310.3260.543699.0640.4779210.2030.537278.4960.472999.6480.536298.4310.468649.6300.535818.4600.4456310.1010.53297.4270.4139310.0680.530227.0980.394178.9450.52687.3140.385549.9850.5261036.2300.366根据上表得到前十名学生序号为:70,30,75,33,86,2,51,84,60,20.方法三:层次分析法(AHP)考虑到光以学分为权重进行加权平均不能完全代表各个学生的真实成绩,因为各门课之间的重要程度的因素是很多的,不能单一地以学分多少作为评价课程重要程度的依据。因此我们计划将课程性质、学时与学分综合作为考察一个课程重要程度的依据,并以此作为加权平均的权重,下面是先用层次分析法对课程性质进行重要程度排序。然后根据公式:综合成绩=i=121(学分*成绩*学时比重*课程性质)总学分求出综合成绩。(在这里,将21门课的学分*学时比重*课程性质总学分定义为权重向量W)5.3.1建立层次结构模型课程重要程度基础课必选课专业课任选课人文课5.3.2构造成对比较矩阵层次结构反映了各因素之间的关系,但准则层中的各准则在目标衡量中所占的比重并不一定相同。我们就通过各因素两两比较来确定比较判断矩阵表3.1 标度的具体含义标度含义1表示两个因素相比,具有相同重要性3表示两个因素相比,前者比后者稍重要5表示两个因素相比,前者比后者明显重要7表示两个因素相比,前者比后者强烈重要9表示两个因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值根据上述标准就可以构造判断矩阵:A= 123571/212361/31/21251/51/31/2121/71/61/51/215.3.3一致性检验及层次排序用MATLAB的eig函数算出判断矩阵A的最大特征值为:lmax=5.0523查表得n=5相应的平均随机一致性指标RI=1.12一致性指标CI的计算:CI=lmax-nn-1=0.015575一致性比率CR的计算: CR=CIRI0.0140.1CR0.1,我们可以认为判断矩阵的一致性是可以接受的。用MATLAB计算矩阵A的最大特征向量并做归一化处理得:w=(0.4370,0.2657,0.1663,0.0860,0.0450)T得到的向量w就是根据AHP得到的五种课程的权重排序。5.3.4计算课程权重排序上述的权重排序仅考虑了课程性质,再对各种课程性质中不同课程学时的不同对各课程再排序。下表是各课程所对应的学时数:表3.2 课程对应学时表基础课课程14课程2课程53课程62专业课课程7课程82课程93必选课课程10课程153任选课课程16课程193人文课课程20课程212在这里,我们以学时数考虑相同课程性质内不同课程的重要程度,一般认为学时数越多的课程越重要,所以用(各课程学时数/各性质课程总学时数)作为权重进一步优化权重向量;同样地,学分的多少也是一种评价课程重要程度的依据,所以用(各课程学分数/总学分)作为权重加入权重向量W中。5.3.5数据处理及模型求解在MATLAB中,建立一个41x21的成绩矩阵A,用A与权重向量W相乘,得到所有学生的综合成绩表如下表3.3 综合成绩表学生序号综合成绩学生序号综合成绩13.6577603.868623.9276623.724443.6651633.774883.5376643.838093.7051693.6583103.7712704.0366123.7930723.8312133.8216733.7580173.7874743.8240183.7491753.8755203.8784803.7380223.4725813.6669273.6747843.8547293.7098863.9568303.9862913.6187333.7791923.7208443.7002933.7746513.7965963.7356533.7451993.7534543.68691033.2921 将上表所有数据输入EXCEL,运用EXCEL的排序功能得到综合成绩排序:表3.4 综合成绩排序表学生序号综合成绩学生序号综合成绩704.0366993.7534303.9862183.7491863.9568533.745123.9276803.738203.8784963.7356753.8755623.7244603.8686923.7208843.8547293.7098643.83893.7051723.8312443.7002743.824543.6869133.8216273.6747513.7965813.6669123.79343.6651173.7874693.6583333.779113.6577633.7748913.6187933.774683.5376103.7712223.4725733.75801033.2921从上表中,我们可以看到前十名的学生序号为:70,30,86,2,20,75,60,84,64,72.方法四:模糊层次分析法(FAHP)AHP的关键环节是建立判断矩阵,判断矩阵是否科学、合理直接影响到AHP的效果,而判断矩阵的建立往往具有主观性,并且判断矩阵一致性的判断标准:CR0.1缺乏科学依据,而模糊层次分析法可以较好地规避这些问题。下面是先用模糊层次分析法得到课程性质的权值向量W,再根据公式:综合成绩=i=121(学分*成绩*学时比重*课程性质)总学分求出综合成绩。(在这里,将21门课的学分*学时比重*课程性质总学分定义为权重向量W)5.4.1建立层次结构模型5.4.2建立模糊一致判断矩阵下表为模糊一致判断矩阵的数量标度:表4-1 数量标度标度说明0.5两元素相比,同等重要0.6两元素相比,一元素稍微重要0.7两元素相比,一元素明显重要0.8两元素相比,一元素重要得多0.9两元素相比,一元素极端重要0.1,0.2,0.3,0.4若元素ai与元素aj相比较得到判断rij,则元素aj与元素ai比较得到的判断为rji=1-rij有了上面的数字标度后,可得到如下模糊判断矩阵,并根据模糊一致矩阵的充要条件进行调整,具体步骤如下: 第一步:假设将第一行元素r11,r12r15视为有把握的; 第二步:用R的第一行元素减去第二行对应元素,若所得的一个差数为常数,不需调整第二行元素。否则,要对第二行元素进行调整,直到第一行元素减第二行的对应元素之差为常数为止。 第三步:用R的第一行元素减去第三行的对应元素,若所得的n个差数为常数,则不需调整第三行的元素。否则,要对第三行的元素进行调整,直到第一行元素减去第三行对应元素之差为常数为止。上面步骤如此继续下去直到第一行元素减去第 行对应元素之差为常数为止。 由以上步骤可以得到如下模糊一致矩阵:R=计算课程权重排序下面引入几个定理:定理4.1 设R是n阶模糊矩阵,则R是模糊一致矩阵的充分必要条件是存在一n阶非负归一化的向量W=(w1,w2,wn)T及一正数a,使得对于任意的I,j rij=a(wi-wj)+0.5 (1)定理4.2(必要性)若R是模糊一致矩阵,则其权重可由(2)式计算: Wi=1n-12a+1na*k=1nrik (2)其中,a(n-1)/2,i=1,2,3,4,5. 运用以上定理,在本模型中,不妨设a=2,分别代入i=1,2,3,4,5于(2)式中得到:W1=0.3, W2=0.25, W3=0.2, W4=0.15, W5=0.10 所以,W=(0.3,0.25,0.20,0.15,0.10)T 再将学时比重和学分对权重向量的影响考虑进来得到权重向量W.5.4.4数据处理及模型求解在MATLAB中,建立一个41x21的成绩矩阵A,用A与权重向量W相乘,得到所有学生的综合成绩表如下:表4-2 学生综合成绩表学生序号综合成绩学生序号综合成绩13.5880603.878323.8560623.657343.5871633.760183.5402643.828593.4843693.6062103.6558704.0121123.6412723.8074133.6879733.7725173.8398743.7501183.6013753.8835203.8228803.7785223.4110813.4576273.5901843.7675293.6703863.9631303.9997913.6797333.7805923.7762443.5472933.7328513.8015963.6673533.8064993.6129543.67211032.7896将上表所有数据输入EXCEL,运用EXCEL的排序功能得到综合成绩排序:表4-3 综合成绩排序表学生序号综合成绩学生序号综合成绩704.0121133.6879303.9997913.6797863.9631543.6721753.8835293.6703603.8783963.667323.856623.6573173.8398103.6558643.8285123.6412203.8228993.6129723.8074693.6062533.8064183.6013513.8015273.5901333.780513.588803.778543.5871923.7762443.5472733.772583.5402843.767593.4843633.7601813.4576743.7501223.411933.73281032.7896从上表中,我们可以看到前十名的学生序号为:70,30,86,75,60,2,17,64,20,72.六、模型评价与推广6.1模型的优缺点本文用到了四种模型,它们各有其优缺点。第一种模型:简单加权平均值模型,简洁易懂,有利于数据的筛选。这种模型的缺点也很明显,它直接采用分数的比较,有可能会受到不同教师打分不同及标准差不同的问题、不同科目难度不同的问题。第二种模型:标准化模型,在此模型下,所有的成绩都转化为01之间的数,使课程分数域相同,这有效解决了各科老师给分习惯导致的评分标准不同的问题,使各科的成绩可比性增强。它的缺点是一些同学因为考取最低分而最终该科成绩为0分,这种零分情况难以接受。最后两种模型:一种是层次分析模型,另一种是模糊层次分析模型。这两种模型有相同之处,它们都将研究对象看做一个系统,充分考虑了各种权重影响因素,解决了课程难度不均带来的不公平的问题。但是前一种层次分析模型的判断矩阵的建立有主观性,不具有科学严谨性,而模糊层次分析法可以规避这个问题,严谨性更强。6.2最终结果比较:模型1模型2模型3模型470707070303030308675868675332755186206060275225160178084846499606420122072726.3建议与推广1.推行全面素质教育,不局限于以学生考试成绩作为评定的唯一标准,以竞赛获奖,宿舍卫生情况等作为评定的辅助标准。2.根据聚类分析法依据学生每年的反映对课程学分进行动态调整,保证其先进性。参考文献1.陈恩水,王峰,数学建模与实验M,北京:科学出版社,2008年6月:1-9,162-169;2.屈婉玲,刘田,张立昂,王捍贫,算法设计与分析M,北京:清华大学出版社,2011年5月:17-22;3. 王树禾,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瓦工酒店贴砖合同
- 交通事故同等责任和解协议书
- 2026-2031中国光学薄膜行业运营态势研究报告
- 2026-2031中国管材市场深度研究与投资前景评估报告
- 2025年工勤职业道德试题及答案
- 动车组机械师海外项目适应力考核试卷及答案
- 第四课《合作互助好处多》(教案)-北师大版心理健康三年级上册
- 3.2 等式的性质教学设计-2025-2026学年初中数学湘教版2012七年级上册-湘教版2012
- 2024年煤炭生产经营单位安全生产管理人员证模拟考试题库及答案
- 2025年影像期末试题及答案
- -《经济法学》1234形考任务答案-国开2024年秋
- 液压与气压传动讲义
- 新部编版六年级语文上册第一、二单元测试卷(有答案)
- 江西省百分智联盟2024-2025学年高三下学期3月联考历史试题(含解析)
- 产品检测合格证登记表
- 2024-2025学年第二学期初中学校心理工作计划(附2月-7月安排表)
- 社会领域培训
- 工资结算方案
- 《创新创业基础》课程考试复习题库及答案
- 非新生儿破伤风诊疗规范(2024年版)解读
- 3.3.2 设置表格格式(课件)-【中职专用】高一信息技术同步课堂(高教版2021基础模块上册)
评论
0/150
提交评论