数学物理方程讲义(第3章答案) 谷超豪.pdf_第1页
数学物理方程讲义(第3章答案) 谷超豪.pdf_第2页
数学物理方程讲义(第3章答案) 谷超豪.pdf_第3页
数学物理方程讲义(第3章答案) 谷超豪.pdf_第4页
数学物理方程讲义(第3章答案) 谷超豪.pdf_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5n6SK%? ? v|= u|+ M m 4R2 (x x0)2+ (y y0)2|. ?, 73 S,:(x1,y1) ?, 3:A k vxx 0, vyy 0,vxx+ vyy 0. ?, vxx+ vyy= uxx+ uyy+ M m 4R2 0 ?g. dAkM = m. 4.3 yK ut a2uxx= f(x,t), u|x=0= 1(t),(ux+ hu)|x=l= 2(t) (h 0), u|t=0= (x) ?)u(x,t) 3Rt1: 0 t t1,0 x l v u(x,t) et1max 0,max 0xl (x), max 0tt1 et1(t), et2(t) h ! , 1 max Rt1 (etf) ! , ?. ):Cv(x,t) = etu, ?. du ?Kv v vt a2vxx+ v = etf(x,t), v|x=0= et1(t), v n + hv !? ? ? ?x=l= et2(t), v|t=0= (x). v 3Rt1?, XJv(x,t) 3Rt1k?, K3: kvt 0, vxx 0 v 0, ? v = 1 e t f(x,t) (vt a2vxx) 1 e t f(x,t). |u(x,t)| et1 1 max Rt1 (etf(x,t). 2?P62y?O, =?(. 7htqi200814 5n6SK%? 5)?C5? 5.1 ye?9D?K ut a2uxx= 0, u|x=0= u|x=l= 0, u|t=0= (x) ?)?t + /Pu, Y, (0) = (l) = 0. ):d)K?) u(x,t) = X k=1 Ake k22a2 l2 t sin k l x, Ak= 2 l Z l 0 (x)sin k l xdx. )?C5? d(x) C0,l , k, |Ak| C1, C1= ?k?. |u(x,t)| C1 1 + X k=2 e a22(k21) l2 t e a 22 l2 t Ce a22 l2 t. 5.2 y: ?(x,y) R2?k.Y, L1(R2) , ?9D? K?), ?t + , t1Pu. ): |u(x,y,t)| 1 4a2t R2 |(,)|e (x)2+(y)2 4a2t dd 1 4a2t R2 |(,)|dd = Ct1. 5.3 y: ?(x,y,z) R3?k.Y, L1(R3) , n9D ?K?), ?t + , t3/2Pu. ): |u(x,y,z,t)| 1 (2a t)3 $ R3 |(,)|e (x)2+(y)2+(z)2 4a2t ddd 1 (2a t)3 $ R3 |(,)|ddd = Ct3/2. 7htqi200815 1nN 7 2008 c 12 ? 9 F 8 1!)1 2?9A8 3?11 4r4?n!1?K)?519 1!) 1.1 ?u(x1,., xn) = f(r) (r = q x2 1 + + x2 n) n N, y f(r) = c1+ c2 rn2 (n , 2), f(r) = c1+ c2ln 1 r (n = 2), c1, c2?. y:dur = q x2 1 + + x2 n, u xi = f 0(r)r xi = f 0(r)xi r , 2u x2 i = x2 i r2 f 00(r) + 1 r x2 i r3 ! f 0(r), (i = 1,2,.,n) 1 5n6SK%? “N? f 00(r) + n 1 r f 0(r) = 0, = f00(r) f0(r) = n 1 r . =?(. 1.2 y: .df3I(r,) e? 4u = 1 r2 r r2 u r ! + 1 r2sin sin u ! + 1 r2sin2 2u 2 . y: IX?IXm?CX x = rsincos, y = rsinsin, z = rcos, O, dIC x = Rcos, y = Rsin, z = z, 9 R = rsin, = , z = rcos. dIXeLaplace f?L 4u = 2u R2 + 1 R2 2u 2 + 1 R u R + 2u z2 .(1) 2d u r = u R sin + u z cos, u = u Rrcos u z rsin, )? u z = cos u r sin r u , u R = sin u r + cos r u .(2) 5? R2+ z2= r2,tan = R z , ?k r z = cos, z = sin r , r R = sin, R = cos r .(3) 7htqi20082 5n6SK%? d(2) 9(3) 2u z2 = cos2 2u r2 + sin2 r2 2u 2 + sin2 r u r + sin2 r2 u sin2 r 2u r , 2u R2 = sin2 2u r2 + cos2 r2 2u 2 + cos2 r u r sin2 r2 u + sin2 r 2u r . ?9(2) “(1) ?n, =?I(J. ?: ?-IX(q1,q2,q3) q1= q1(x,y,z),q2= q2(x,y,z),q3= q3(x,y,z), ,(x,y,z) L(q1,q2,q3) ? x = x(q1,q2,q3),y = y(q1,q2,q3),z = z(q1,q2,q3). P.rXH1, H2, H3 H1= s x q1 !2 + y q1 !2 + z q1 !2 , H2= s x q2 !2 + y q2 !2 + z q2 !2 , H3= s x q3 !2 + y q3 !2 + z q3 !2 , Kk ds2= H2 1dq 2 1+ H 2 2dq 2 2+ H 2 3dq 2 3. dLaplace f3-IX?L 4u = 1 H1H2H3 q1 H2H3 H1 u q1 ! + q2 H3H1 H2 u q2 ! + q3 H1H2 H3 u q3 !# .(4) 3IXeq1= r, q2= , q3= , ds2= dr2+ r2d2+ r2sin2d2, H1= 1,H2= r,H3= rsin H1, H2, H3“(4) =?IeLaplace f?L. 7htqi20083 5n6SK%? 1.3 y: .df3I(r,z) e? 4u = 1 r r r u r ! + 1 r2 2u 2 + 2u z2 . y: IX?IXm?CX x = rcos, y = rsin, z = z, r = (x2+ y2)1/2, = arctan y x, z = z. l? r x = x r = cos, r y = y r = sin, x = y x2+ y2 = sin r , y = x x2+ y2 = cos r . dd? u x = u r cos u sin r , u y = u r sin + u cos r , 2u x2 = 2u r2 cos2 2 2u r sincos r + 2u 2 sin2 r2 + u r sin2 r + u sin2 r2 , 2u y2 = 2u r2 sin2 + 2 2u r sincos r + 2u 2 cos2 r2 + u r cos2 r u sin2 r2 , ?, ?n, =?I(J. ?: K, 3IXeq1= r, q2= , q3= z, K ds2= dr2+ r2d2+ dz2, H1= 1,H2= r,H3= 1, “(4) =?IeLaplace f?L. 1.4 ye?N: 1. ax + by + c(a, b, c ); 2. x2 y22xy; 3. x3 3xy23x2y y3; 4. shnysinnx, shnycosnx, chnysinnx chnycosnx (n ); 7htqi20084 5n6SK%? 5. sh x(chx + cosy)1siny(ch x + cosy)1. y: ?y; ?: |EC?y, = $)?JN?5y. 1. 4(ax + by + c) = 0; 2. ?ECf(z) = z2= (x + iy)2; 3. ?ECf(z) = z3= (x + iy)3; 4. ?ECf1(z) = sh(nz) = sh(n(y + ix), f2(z) = ch(nz) = ch(n(y + ix); 5. ?ECf(z) = th z 2 = sh z 2/ch z 2, ?x = 0 y = (2k + 1) (k = 0,1,2,.) ?N. 1.5 y4IL?e?N: 1. lnr ; 2. rncosn rnsinn (n ); 3. rlnrcos rsin rlnrsin + rcos. y: ?y; ?: Pz = rei, |)? JN?5y. 1. ?ECf(z) = lnz = lnr + i; 2. ?ECf(z) = zn= rncosn + irnsinn; 3. ?ECf(z) = zlnz = r(cos + isin)(lnr + i). 1.6 lC)deN?1K?/ (0 x a, 0 y b) ?-: uxx+ uyy= 0, u(0,y) = u(a,y) = 0, u(x,0) = sin x a , u(x,b) = 0. 7htqi20085 5n6SK%? ):-u(x,y) = X(x)Y(y) “uxx+ uyy= 0 ?X Y Ov X00+ X = 0,X(0) = X(a) = 0;(5) Y00 Y = 0.(6) (5) k 0 k), = k= k22 a2 , Xk(x) = Cksin k a x,Yk(y) = Ake ky+ Bke ky. ?)K?) u(x,y) = X k=1 ? Ake k ay+ Bke k ay?sin k a x. d.? X k=1 (Ak+ Bk)sin k a x = sin x a , X k=1 ? Ake k ab+ Bke k ab?sin k a x = 0. )? A1= e b a 2sh b a ,B1= e b a 2sh b a ,Ak= Bk= 0 (k , 1). n? u(x,y) = sh (by) a sh b a sin x a . 1.7 3?.A?O, ?3Ye? , 3/0 x a, 0 y b )Xe?gN? K: 4u = py + q(p 0), ux|x=0= 0, u|x=a= 0, u|y=0,y=b= 0. 7htqi20086 5n6SK%? ):-v(x,y) = u(x,y) + (x2 a2)(fy + g), ?f = p/2, g = q/2, Kv e K) 4v = 0, vx|x=0= 0, v|x=a= 0, v|y=0= q 2(x 2 a2) = (x), v|y=b= 1 2(x 2 a2)(pb + q) = (x). dlC)? v(x,y) = X k=0 ? Ake (2k+1) 2a y + Bke (2k+1) 2a y?cos2k + 1 2a x = 2 X k=0 (1)k ?(2k+1) 2a ?3 sh 2k+1 2a b cos (2k + 1)x 2a (pb + q)sh (2k + 1) 2a (y b) qsh (2k + 1)y 2a # . 1.8 3?N?)|X?K, X)u(x,y) 3 ?k.?, o)K?)?. ):XeDirichlet ?K 4u = 0, r = p x2+ y2 1, u|r=1= 1. w,u 1, u = cln 1 r + 1 (c R) d?K?), =d)K?) . 1.9 ? J(v) = $ 1 2 v x !2 + v y !2 + v z !2 dxdydz + (1 2v 2 gv ) ds, ?CK: u V, J(u) = min vV J(v), V = C2() C1(). ?d?K, y?d5. y:dCKXe)K?d 4u = 0, u n + u !? ? ? ? ? = g. 7htqi20087 5n6SK%? 2?9A 2.1 y(2.7) uM03 ? ?/. y:?M03 , ?B(M0) ?M0(M0%, ). PS , = B(M0), Ku 9 1 rM0M 3SN. |Green 1? 0 = $ u4 1 rM0M 1 rM0M 4u ! dVM = S(M0) u n 1 rM0M 1 rM0M u n ! dSM, 1 rM0M u n u n 1 rM0M ! dSM= S 1 rM0M u n u n 1 rM0M ! dSM. S 1 rM0M u n u n 1 rM0M ! dSM = 1 S u(M) n dSM+ 1 2 S u(M)dSM = 1 u n(M )22 + 1 2 u(M)22 = 2u n(M ) + 2u(M) 2u(M0), 0. ?k 1 rM0M u n u n 1 rM0M ! dSM= 2u(M0). ?M03 ?, u 9 1 rM0M 3 SN. |Green 1?. 2.2 eu(x,y) ?N, q3 ? u = sin, L4?, u 3?:?u? ):d?N? u(M0) = 1 2a Z a uds, u(0,0) = 1 2 Z uds = 1 2 Z 2 0 sind = 0. 7htqi20088 5n6SK%? 2.3 XJ.dL|v?, ?SKk)?!fds = 0 ?n. ): ! fds = 0 =LL.-96?“, =?u- G?N, lL66?9?. 2.4 y: ?u(M) 34- ?N, 3? u(M) = O 1 rOM ! , u r = O 1 r2 OM ! (rOM ), ?M0 ?:, K(2.6) E. y:?M0 ?:, R ?KR, 9M03 S, PKR?R, K +R u n 1 rM0M ! 1 rM0M u n ! dS + 4u 4 u n ! = 0. u ? u n ? Ou u n 3M0?. -R , 5?u(M) = O ? 1 rOM ? , u r = O ? 1 r2 OM ? k lim R R u n 1 rM0M ! 1 rM0M u n ! dS = 0. ?u(M) 3 ?N u(M0) = 1 4 u(M) n 1 rM0M ! 1 rM0M u(M) n # dSM. 2.5 yN)|X?K)?-5. y:?u1, u2Dirichlet ?K?), = 4ui= 0, ui|= fi, lim r ui= 0, i = 1,2. -v = u1 u2, Kv v 4v = 0, v|= f1 f2, lim r v = 0. dulim r v = 0, ? 0, ?R ?KR, 3KR S, |v|R| . 3KR v A4?n, ?3KR |v| max ? ,max |f1 f2| ? |v| K)?5- 5. y:5: eu1, u2v Lu = n X i,j=1 aij 2u xixj + n X i=1 bi u xi + cu = 0, u|= f. -v = u1 u2, K Lv = 0,v|= 0. 7htqi200810 5n6SK%? dK, v 3 S?K?, ?K? 3.?, dd?v 0, ?u1 u2. -5: eu1, u2Ov Lui= 0,ui|= fi, i = 1,2. Kv = u1 u2v Lv = 0,v|= f1 f2. dK, ?min (f1 f2) 0 , 0 v 0 min (f1 f2) 0 , min (f1 f2) v max (f1 f2). n, ?|f1 f2| . ?0, ?x = 1 2 q 2 c, y = 1 2 q 2 c u = 1, 3 Su 1, u ? 3S?, l?4?n. 3? 3.1 y?53955. y:(53) du G(M, M0) = 1 4rM0M g(M, M0),M0 g(M, M0) v 4g(M, M0) = 0,M , g(M, M0)|= 1 4rM0M . w, g| 0, d4?ng(M, M0) 0, ? G(M, M0) 0. 4G(M, M0) = 0, K, G|= 0,G|= 1 4rM0M g(M, M0) 0. d4?n?, 3 KS, G 0. ? ?, ?G 0 3 S, dd =? 0 K?) uxx+ uyy+ uzz= 0,x2+ y2+ z2?”?N3?)|XK?) 4u = uxx+ uyy= 0,y 0, u|y=0= f(x). ):m/aq? G(M, M0) = 1 2 ln 1 rM0M 1 2 ln 1 rM1M . 7htqi200816 5n6SK%? dd? u(x0,y0) = y0 Z 1 (x0 x)2+ y2 0 f(x)dx. 5?u vu(M) = O ? ln 1 rOM ? 9u n = O ? 1 rOM ? u(M0) = 1 2 Z u(M) n ln 1 rM0M ! ln 1 rM0M u(M) n # dsM. 3.9 ? ?/3?:O %!R ?K , u(r,) d?N, (r,) L :M ?I. ?r1= R2 r , K :M1= (r1,) :M uK ?:, lM(r,) ?M1(r1,) ?C _CCCCCC. 1L ?, y v(r1,) = R r1 u R2 r1 , ! 1?N(?:?). XJ K ?., Kv(r1,) 31? :O ?N?. v(r1,) u(r,) ?ppp?(Kelvin) CCC. y:|IXeLaplace f?L, dE?K?: ? 4r,.u(r,) = 0 , 7k 4r1,.v(r1,) = 0. 3.10 |p?C9:?5nr)|X?Kz)|X SK. ):)Dirichlet ?K 4u = 0,0S u|= f, lim r = 0. R ?K ?3 S, 0uK ? Sk. 1, .1, dK v(r1,) = R r1 u R2 r1 , ! 7htqi200817 5n6SK%? v 4(r1,)v = 0,1S v|1= f1(r1,), f1(r1,) = R r1 f ? R2 r1, ? . 5? lim r10 r1 v = lim r R u(r,) = 0 r1= 0 v ?:, ?-#v 3r1= 0 ?, v 31SN. 3.11 ym.?NX3?u, ou ?O ? 1 r ? . y:dK, ?u(r,) 3.SN, 3?u, v(r1,) = R r1 u R2 r1 , ! 3k.1SN()?:), ?v 731Sk., =3A, |v| A. dv ?, ?r k ? ? ? ? ? r Ru(r1,) ? ? ? ? ? A|u(r1,)| c r . y?u 3?u?O ? 1 r ? . 3.12 y?v(2.11) ?YN. y:u Y, 3 S?v, ?:M0%, K, ?3 S, 3KS)Dirichlet K 4v = 0,KS v|= u|. dPoisson 3)v, v KS?N, , ? ?u v 3KS, du v 4?n, ?dv ? (u v)|= 0, dd?3KSu v 0, =u 3KSN. dM0?5= ?u 3 SN. 7htqi200818 5n6SK%? 4r4?n!1?K)?5 4.1 r4?n5y4?n. y:eu ?3S:M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论