



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_韦达定理及其应用【内容综述】设一元二次方程有二实数根,则, 。这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。【要点讲解】1求代数式的值应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。例1 若a,b为实数,且,求的值。思路 注意a,b为方程的二实根;(隐含)。说明 此题易漏解a=b的情况。根的对称多项式,等都可以用方程的系数表达出来。一般地,设,为方程的二根,则有递推关系。其中n为自然数。由此关系可解一批竞赛题。附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。例2 若,且,试求代数式的值。思路 此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。2构造一元二次方程如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。例3 设一元二次方程的二实根为和。(1)试求以和为根的一元二次方程;(2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。3证明等式或不等式根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 例4 已知a,b,c为实数,且满足条件:,求证a=b。说明 由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。4研究方程根的情况将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程 的实根符号判定有下述定理:方程有二正根,ab0;方程有二负根,ab0,ac0;方程有异号二根,ac0;方程两根均为“0”,b=c=0,;例5 设一元二次方程的根分别满足下列条件,试求实数a的范围。二根均大于1;一根大于1,另一根小于1。思路 设方程二根分别为,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。说明 此例属于二次方程实根的分布问题,注意命题转换的等价性;解题过程中涉及二次不等式的解法,请参照后继相关内容。此例若用二次函数知识求解,则解题过程极为简便。5求参数的值与解方程韦达定理及其逆定理在确定参数取值及解方程(组)中也有着许多巧妙的应用。例6 解方程。强化训练A 级1.若k为正整数,且方程有两个不等的正整数根,则k的值为_。2.若, ,则_。3 .已知和是方程的二实根,则_。4.已知方程(m为整数)有两个不等的正整数根,求m的值。级 5.已知:和为方程及方程的实根,其中n为正奇数,且。求证:,是方程的实根。6.已
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄石市中储粮2025秋招面试典型题目及答案
- 宁德市中储粮2025秋招网申填写模板含开放题范文
- 临汾市中石油2025秋招笔试模拟题含答案炼油设备技术岗
- 大唐电力德阳市2025秋招面试专业追问及参考电气工程岗
- 中国广电常州市2025秋招笔试行测题库及答案互联网运营
- 大唐电力苏州市2025秋招面试专业追问及参考计算机与信息岗位
- 中国移动许昌市2025秋招笔试模拟题及答案
- 2025年宠物饲养考试题及答案
- 中国联通湖南地区2025秋招市场与服务类专业追问清单及参考回答
- 芜湖市中石油2025秋招面试半结构化模拟题及答案油品分析质检岗
- 教师岗位聘任申请书模板合集
- 2025年贵州省毕节市辅警招聘考试题库及答案
- 巴中市恩阳区2025年专项招聘卫生专业技术人员的(50人)考试参考题库及答案解析
- 2025-2026学年人教版(2024)小学体育与健康二年级全一册《防溺水知危险》教学设计
- 出海作业安全培训课件
- 9.2 排鱼求数 课件 北京版数学三年级上册
- 监理现场管理知识培训课件
- GJB3206B-2022技术状态管理
- 2025秋人教版(2024)二年级上册数学教学计划
- 桥梁河床断面测量课件
- 中药质量检测技术
评论
0/150
提交评论