


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用基本不等式求最值的类型及方法均值不等式是不等式一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。要求能熟练地运用均值不等式求解一些函数的最值问题。一、几个重要的均值不等式当且仅当a = b时,“=”号成立;当且仅当a = b时,“=”号成立;当且仅当a = b = c时,“=”号成立; ,当且仅当a = b = c时,“=”号成立.注: 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; 熟悉一个重要的不等式链:。二、函数图象及性质(1)函数图象如图:(2)函数性质:值域:;单调递增区间:,;单调递减区间:,.三、用均值不等式求最值的常见类型类型:求几个正数和的最小值。例1、 已知,求函数的最大值。练习(1) (2) (3)类型:求几个正数积的最大值。例2、 当时,求的最大值。练习 类型:用均值不等式求最值等号不成立。例3、若x、y,求的最小值。类型:条件最值问题。例4、已知正数x、y满足,求的最小值。类型:利用均值不等式化归为其它不等式求解的问题。例5、已知正数满足,试求、的范围。类型 条件求最值例6、若实数满足,则的最小值是 练习若,求的最小值.并求x,y的值综上所述,应用均值不等式求最值要注意: 一要正:各项或各因式必须为正数;二可定:必须满足“和为定值”或“积为定值”,要凑出“和为定值”或“积为定值”的式子结构,如果找不出“定值”的条件用这个定理,求最值就会出错;三能等:要保证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业节能减排的技术与方法探讨
- 工作室绿化对身体健康的促进作用研究
- 工业设计原理与创新方法探讨
- 工业设计的发展与创新
- 工业风环境设计的风格特点与实践案例
- 工作与生活平衡的职场发展策略
- 工程信息化背景下现代工程管理的新思路
- 工程数学实现工程项目的基石
- 工程机械中复杂结构的焊接工艺分析
- 工程建筑行业的安全管理实践
- 毕业设计基于S7200PLC的精馏温度控制系统的设计
- 3000吨汽车车身大中型冷冲模具生产线建设项目可行性研究报告
- 内蒙古自治区中小学职称评价标准条件
- GB/T 29047-2021高密度聚乙烯外护管硬质聚氨酯泡沫塑料预制直埋保温管及管件
- 某射击馆照明平面回路设计及智能照明控制分析
- 植物检疫性病毒病害
- 血管外科常见疾病课件
- 农村公共管理复习资料
- 人教版道德与法治八年级下册期末测试卷--含答案-八下道德期末试卷人教版
- Q∕GDW 12067-2020 高压电缆及通道防火技术规范
- 2020-2021广东二建继续教育试题及答案
评论
0/150
提交评论