




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文库题 目: 矩阵论在电气工程中的应用 指导老师: xxx 学生姓名: xxx 所属院系: 电气工程学院 专 业: 电气工程 学 号: xxx 完成日期: 20 xx年x月x日 矩阵论在电气工程中的应用摘 要电路分析是电气专业领域人员必需的一项能力。该知识具有概念性强、电路分析繁杂求解计算量大的特点。为了解决这个问题,因此引入了矩阵理论,并结合软件对矩阵分析的良好支持,以期达到优化分析电路的目的。本文就矩阵理论中的网络拓扑知识展开,介绍了网络拓扑在电路中的应用,并以给予求解。关键词 : 电路分析 矩阵法 网络拓扑ABSTRACT:Circuit analysis is an essential ability of professional personnel in the field of electronic. The concept of strong, complex circuit analysis calculation with the knowledge of the characteristics of large amount. In order to alleviate this problem, so we introduced matrix theory, combined with good support analysis software for matrix, in order to achieve the purpose of optimization of circuit analysis. In this paper, the network topology in matrix theory unfolds, introduces the application of network topology in circuit, and to give the solution.KEY WORDS:circuit analysis;matrix method;network topology0 前言矩阵是线性代数里的一个重要概念,在电路网络分析、工程结构分析等方面,矩阵都是一个强自力的工具,因为它能使较复杂的计算过程简化成一系列的四则运算,便于用计算机的算法语言或程序进行描述和解答。当运行这些程序时,能迅速地得到较准确的计算结果。在电子领域基础知识电路分析中,经过理论分析后形成线性方程组,求未知解是电路分析的一项基本技能。而求解线性方程组使用矩阵理论优势十分明显。例如某电路网孔法求网孔电流ia,ib,ic,其中电阻供电电压为已知网孔方程为: (1)上述方程(1),在求解过程中相对简单,但如果未知量继续增多,则利用初等代数方法求解线性方程组就比较困难,相当繁杂,借助矩阵理论可将方程式变换为如下矩阵形式 矩阵形式方程(2),可表述为为AI=BuS。(A表示方程组系数矩阵,I表示网孔电流列向量,BuS表示网孔电源列向量)1、网络拓扑性质的矩阵表示当电路结构比较简单时直接利用或网络的各种方法,列出必要的方程并不十分困难。但当电路结构比较复杂时,前述方法就显得很不适应。特别是如何在计算机上把输入的数据自动地转换为所需要的方程,就需要利用网络拓扑和矩阵代数的概念去完成这一任务。网络图论又称为网络拓扑学,适应用图的理论(教学领域的一个分支),对电路的结构及其连接性质进行分析和研究。在网络分析中,列写网络方程的主要问题是如何正确地选择其独立变量,“网络图论”的基本概念为选取这种独立变量提供了理论依据。网络图论的基本概念包括支路(btanch),节点(node),图(graph),树(tree),回路(loop),割集(cut)等。在网络图论中,图所涉及的仅表明网络中各支路的联接情况,而不涉及元件的性质,即它只是用以表示网络的几何结构或拓扑结构的图形。1.1关联矩阵关联矩阵描述支路与节点的关联性质。图1所示有向连通拓扑图有如下特征:节点数n=4,支路数b=5。关联矩阵中行对应于节点,列对应于支路。取值1、-1表示支路与节点关联,并体现出流出或流入节点,取值0表示不关联。其中KCL方程:AI=0;KVL方程:U=AV。其中A为关联矩阵;I为支路电流列向量;U为支路电压列向量;V为n-1个独立节点电压列向量。图1 关联矩阵有向连通拓扑图图图2 回路有向连通拓扑图12 回路矩阵回路矩阵:描述支路与回路的关联性质。具有独立回路如图2 所示有向连通拓扑图有如下特征:节点数n=4、支路数b=6;树支数n-1=3,连支数b-(n-1)=3。若选定支路b1、b2、b3 为树支,则b4、b5、b6 为连支。行对应一回路,列对应一支路。13 割集矩阵割集矩阵:描述支路与割集的关联性质。具有割集状态如图3 所示有向连通拓扑图有如下特征:节点数n=4、支路数b=6;树支数n-1=3,连支数b-(n-1)=3。若选定支路b1、b2、b3 为树支,则b4、b5、b6 为连支。基本割集为单树支割集如3 所示C1,C2,C3。割集矩阵C 中行对应于基本割集, 列对应于支路。KCL:CI=0;KVL:U=CTUx。Ux 为割集电压列向量。 图3 割集矩阵有向拓扑图 图4 基本电路结构14 A、B、C 与节点法、回路法的关系根据关联矩阵A、回路矩阵B、割集矩阵C 基本知识,分析图4 所示电路结构可得如下关系:(1)标准支路伏安关系:(2)矩阵支路伏安关系:(其中Yb 为支路导纳矩阵,等于阻抗的倒数)(3)支路电压与节点电压关系:(4)支路电流关系:(5)节点电压关系:(其中,)2 利用节点法求解电路具体实例图5 电路结构图2.1 节点法求电路各支路电流、支路电压(1)图5 所示左图为电路结构,右图为其拓扑图。选定地点作为参考点,对其余节点分别编号为、;(2)拓扑图支路分别编号为1、2、3、4、5 并按图中所示选定支路方向。(3)列出相关矩阵。(4)求解矩阵参数,(5)计算结果。由此可知:点电压为0.68V;点电压为0.04V;点电压为-0.48V。2.2 利用MATLAB 实现计算机程序求解A=1 0 0 1 0;-1 1 1 0 0;0 -1 0 0 1;Yb=1 0 0 0 0;0 1 0 0 0;0 0 3 0 0;0 0 0 2 0;0 0 0 0 1;Us=0 0 0 -1 0;Is=0 0 0 0 -1;Yn=A*Yb*A;In=A*Is-A*Yb*Us;Un=inv(Yn)*In;3 结束语通过对电路的矩阵论分析,充分展现出了数学所发挥的优势。在实际应用当中,网络拓扑理论既达到了优化电路求解的目的,又实现了数学的学科转移,真正做到了学以致用。实践证明,基于矩阵的网络拓扑分析和电路求解的完美结合,使电路分析趋于简单。参考文献1周琰,周步祥,邢义. 基于邻接矩阵的图形化网络拓扑分析方法J. 电力系统保护与控制,2009,17:49-52+56.2许志海. 空间网络图的表示、量测与分析D.解放军信息工程大学,2007.3姚玉斌,王丹,吴志良,徐维克. 方程求解法网络拓扑分析J. 电力自动化设备,2010,01:79-83.4叶爽利. 基于稀疏矩阵技术的网络拓扑分析D.大连海事大学,2012.5姚玉斌,叶爽利,吴志良,王丹. 稀疏矩阵法网络拓扑分析J. 电力系统保护与控制,2011,23:1-5+10.6杨雄平. 电力系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年呼伦贝尔莫力达瓦达斡尔族自治旗内蒙古大学校园引才笔试备考及答案详解(新)
- 智能机场导航创新创业项目商业计划书
- 2025年教师招聘之《小学教师招聘》练习题库附完整答案详解【必刷】
- 2025内蒙古呼伦贝尔选聘政务服务社会监督员9人笔试备考参考答案详解
- 2025内蒙古呼伦贝尔根河市事业单位艺术专业技术岗位招聘工作人员6人笔试备考及答案详解(考点梳理)
- 2025年教师招聘之《幼儿教师招聘》练习题库包及答案详解(网校专用)
- 教师招聘之《小学教师招聘》能力测试备考题及答案详解【基础+提升】
- 2025内蒙古呼伦贝尔林业集团有限公司招聘工作人员5人备考及完整答案详解1套
- 教师招聘之《小学教师招聘》考前冲刺试卷含答案详解
- 2025内蒙古呼伦贝尔林业集团有限公司招聘工作人员5人备考参考答案详解
- 2025年全国新高考I卷真题1卷语文+数学+英语试卷(含答案)
- 中国山西省危险废物处理市场调查报告
- 成人床旁心电监护护理规程
- 2025年高考全国一卷语文试题真题文档版(含答案)
- 公司财务u盾管理制度
- 拍摄肖像授权协议书
- 叶轮逆向设计方法与流程
- 《畜禽环境卫生》第一章-环境与畜禽的关系
- 《医疗的人文关怀》课件
- 非盗抢汽车合同协议
- 爱国卫生运动主题班会课件
评论
0/150
提交评论