Lecture_5Swaps(衍生金融工具-人民银行研究院,何佳).ppt_第1页
Lecture_5Swaps(衍生金融工具-人民银行研究院,何佳).ppt_第2页
Lecture_5Swaps(衍生金融工具-人民银行研究院,何佳).ppt_第3页
Lecture_5Swaps(衍生金融工具-人民银行研究院,何佳).ppt_第4页
Lecture_5Swaps(衍生金融工具-人民银行研究院,何佳).ppt_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Lecture 5 Swaps Aswapisanagreementbetweentwoormorepartiestoexchangesetsofcashflowsoveraperiodinthefuture Thepartiesthatagreetotheswapareknownascounter parties Thecashflowsthatthecounter partiesmakearegenerallytiredtothevalueofdebtinstrumentsortothevalueofforeigncurrencies Therefore thetwobasickindsofswapsareinterestrateswapsandcurrencyswaps TheSwapsMarket Swapsarecustomtailoredtotheneedsofthecounter parties Theswapsmarkethasvirtuallynogovernmentregulation Defaultrisk ValueofOutstandingSwaps BillionofPrincipal PlainVanillaSwapsInterestrateswapsCurrencySwaps Motivationsforswaps Commercialneeds Asanexampleofprimecandidateforaninterestrateswaps consideratypicalsavingsandloanassociation Savingsandloanassociationsacceptdepositsandlendthosefundsforlong termmortgages Becausedepositorscanwithdrawtheirfundsonshotnoticedepositratesmustadjusttochanginginterestrateconditions MostmortgagorswishtoborrowatafixedrateforalongtimeinUS Isthereanyinterestrisk Canswapscontracthelp Comparativeadvantage Inmanysituations onefirmmayhavebetteraccesstothecapitalmarketthananotherfirm Forexample aU S firmmaybeabletoborroweasilyintheU S butitmightnothavesuchfavorableaccesstothecapitalmarketinGermany Similarly aGermanfirmmayhavegoodborrowingopportunitiesdomesticallybutpooropportunitiesintheStates InterestRateSwaps TwoPartiesexchangeperiodicinterestpaymentsoveraperiod Typically oneparty spaymentsarebasedonafixedratewhereasitscounterparty spaymentsarebasedonafloatingrate Interestpaymentsarecomputedusinganotionalprincipal Example BothAandBneedtoborrow 100millionfor3years Thefinancingratesfacingthemaresummarizedasfollows ItiscomparativelycheaperforAtousethefloatingratedebt ForB fixedrateborrowingwillbecheaper Why 1 IfAdesiresthefloatingratedebtandBprefersthefixedratedebt thereisnoneedforthemtoengageinaswap 2 IfAdesiresthefixedratedebtandBprefersthefloatingratedebt AshouldstillborrowfloatingrateandBborrowfixedrate Theycanthenenteraswaptobetterbothparties 6 3 Company Company LIBOR A B6 3 0 85 LIBORa CompanyA Borrowsfloatingrateandenterstheaboveswap b CompanyB Borrowsfixedrateandenterstheaboveswap TheresultsCompanyA Onasemiannualbasis receives LIBOR 6 3 50mfromtheswap andpaysthefloatingratedebtservice LIBOR 0 85 50m Thenetpaymentis7 15 50m whichislessthan7 5 50m CompanyB Onasemiannualbasis receives 6 3 LIBOR 50mfromtheswap andpaysthefixedratedebtservice6 3 50m ThenetpaymentisLIBOR 50m whichislessthan LIBOR 0 25 50m Note Swapratereferstofixedrateswap Swapsthroughanintermediary6 4 6 25 Company Swap Company LIBOR A Dealer B6 3 0 85 LIBORLIBOR TheresultsCompanyA Onasemiannualbasis receives LIBOR 6 4 50mfromtheswap andpaysthefloatingratedebtservice LIBOR 0 85 50m Thenetpaymentis7 25 50m whichislessthan7 5 50m CompanyB Onasemiannualbasis receives 6 25 LIBOR 50mfromtheswap andpaysthefixedratedebtservice6 3 50m Thenetpaymentis LIBOR 0 05 50m whichislessthan LIBOR 0 25 50m Swapdealer Makes 6 4 6 25 50m 75 000 PricingSchedulesThefixedrateintheswapisquotedasacertainnumberofbasispointsabovetheT noteyield Table Indicationpricingforinterestrateswapsat1 30pm NewYorkTimeonMay11 1995 Netting interestpaymentsaremadebyonecounter partytotheotherafternettingoutthefixedandfloatinginterestpayments Assume Notionalamount Q fixedratepayment k Floatingrateusedintimet Rt 1 LIBORattimet 1 NETpaymentattimet Fixedrateattimet Fixed ratepayerreceives Rt 1Q k andfloating ratepayerreceives k Rt 1Q Thefollowingisapossiblescenarioofcashflowsforthefixed ratepayerundera 100million 5 yearswapat5 6 withsemiannualcashflowexchanges Whatistheimplicationofnettingaboutcredit defaultrisk Pricinginterestrateswaps Setthefixedrateofswapsothattheswaphasazerovalueatthetimeofinitiation Thisiscalledparswap Supposethatpaymentdatesaret1 t2 tn Thevalueofaswapattimet Vt fromtheperspectiveofthefloating ratepayer Vt B1t B2t B1t valueoffixed ratebondunderlyingtheswapwhenti t ti 1 B1t nj i 1ke r t tj tj t Qe r t tn tn t B2t valueoffloating ratebondunderlyingtheswap Atthefloatingrateresettingday i e t t1 t2 tn immediatelyafterthepaymentismade B2t Q Why Inbetween i e ti t ti 1 B2t Q k exp r t ti 1 ti 1 t wherek isthefloatingratepaymentattimeti 1alreadyknownattimet Determiningtheswaprateattime0 V0 k ni 1kexp r 0 tj tj Qexp r 0 tn tn Q 0 Q ni 1kexp r 0 tj tj Qexp r 0 tn tn Thatis setanappropriatecouponratesothatthebondispricedatpar Example Counter partyAinathree yearswappays6 monthLIBORandreceivesafixedrateonanotionalprincipalof 100million Theswaphas1 25yearstomaturity Theswapratewasdeterminedoneyearandnine monthago Atthetimeofinitiation 3 year8 bondwaspricedatpar TheLIBORatthelastpaymentdatewas10 2 semiannualcompounding Discountratesfor3 month 9 monthand15 monthmaturitiesare10 10 5 and11 respectively Thefixedrate 8 perannum B1 4e 0 25 0 1 4e 0 75 0 105 104e1 25 0 11 98 24 B2 100 5 1 e 0 25 0 1 102 51 V 98 24 102 51 4 27 million toAand4 27millionB Portfolioofforwards Aswap semiannualinterestexchanges canbeviewedasasequenceofforwardswithmaturities t1 t2 tnwithacommonforwardprice DefinePt asthetime tvalueofzero couponbondmaturingattime for 1facevalue Forti t ti 1 1 Atti 1 k k evaluatedatt k k Pt ti 1 2 Atti 2 k 0 5R ti 1 Q evaluatedatt PVt t i 2 k 0 5R ti 1 Q k 0 5R ti 1 ti 2 Q exp r t ti 2 ti 2 t whereR ti 1 ti 2 istheforwardrate semiannualcompounding attimetover ti 1 ti 2 Why 3 Similarlyforti 3 ti 4 4 Thetotalvalueoftheswapattimet k k exp r t ti 1 ti 1 t nj i 1 k 0 5R tj tj 1 Q exp r t tj 1 tj 1 t Example ContinuethepreviousexampleR 3m 9m 2 exp 0 5 0 75 0 105 0 25 0 1 0 75 0 25 1 11 04 R 9m 15m 2 exp 0 5 1 25 0 11 0 75 0 105 1 25 0 75 1 12 10 V 4 5 1 e 0 1 0 25 4 0 5 0 1104 100 e 0 105 0 75 4 0 5 0 121 100 e 0 11 1 25 4 27 Variationofinterestrateswaps Indexamortizedswaps thenotionalprincipalisreducedoverthelifeoftheswap Constantyieldswaps bothpartsarefloating Forexample onepartmaybelinkedtotheyieldonthe30 yearT bondandtheothermaybelinkedonthe10 yearT note Rate cappedswaps floatingrateiscapped PutableandCallableswaps oneorbothcounter partieshavetherighttocanceltheswapatcertaintimeswithoutadditionalcosts Forwardswaps theswaprateissetbuttheswapdoesnotcommenceuntilalaterdate Currencyswaps Twopartiesexchangeperiodicinterestpaymentsandprincipalsintwocurrencies Example BothAandBneedtoborrowUSD50million orDEMequivalentof84millionbasedon1 68DEM USD forthree year Thefinancingratesfacingthemaresummarizedasfollows ItiscomparativelycheaperforAtousetheDEMdebt ForB USDborrowingwillbecheaper Why 1 IfAdesirestheDEMdebtandBpreferstheUSDdebt thereisnoneedforthemtoengageinaswap 2 IfAdesirestheUSDdebtandBpreferstheDEMdebt AshouldstillborrowDEMandBborrowUSD Theycanenteracurrencyswaptobetterbothparties Interestpaymentflows6 9 USDCompany Company 4 2 DEMA B6 9 USD3 9 DEM b Initialprincipalflow84mDEMCompany Company 84DEMA B50mUSD50mUSD b Terminalprincipalflow84mDEMCompany Company 84DEMA B50mUSD50mUSDb CompanyA BorrowsDEMdebtandenterstheaboveswap c CompanyB BorrowsUSDdebtandenterstheaboveswap d Theresults 1 CompanyA Beginning ExchangeDEM84millionforUSD50million afairtransactionatthecurrentexchangerate DEM168 USD1 In between Onasemiannualbasis receivesDEM4 2m 3 9 andpaysUSD25m 6 9 duetotheswap andpaysDEM42m 4 2 duetoitsDEMdebt ThenetpaymentisUSD25m 6 9 DEM42m 0 3 comparingtoUSD25m 7 5 End ExchangeUSD50mforDEM84m notafairexchangeattheprevailingexchangerate 2 CompanyB Beginning ExchangeUSD50millionforDEM84million afairtransactionatthecurrentexchangerate DEM168 USD1 In between Onasemiannualbasis receivesUSD25m 6 9 andpaysDEM4 2m 3 9 duetotheswap andpaysUSD25m 6 9 duetoitsUSDdebt ThenetpaymentisDEM42m 3 9 whichislessthanDEM42m 4 0 End ExchangeDEM84mforUSD50m notafairexchangeattheprevailingexchangerate Swapthroughanintermediary7 4 6 9 Company Swap Company 4 2 DMA Dealer B9 USD4 2 DM3 9 DM Theresults1 CompanyA Beginning ExchangeDEM84millionforUSD50million afairtransactionatthecurrentexchangerate DEM168 USD1 In between Onasemiannualbasis receivesDEM4 2m 4 2 andpaysUSD25m 7 4 duetotheswap andpaysDEM42m 4 2 duetoitsDEMdebt ThenetpaymentisUSD25m 7 4 whichislessthanUSD25m 7 5 End ExchangeUSD50mforDEM84m notafairexchangeattheprevailingexchangerate 2 CompanyB Beginning ExchangeUSD50millionforDEM84million afairtransactionatthecurrentexchangerate DEM168 USD1 In between Onasemiannualbasis receivesUSD25m 6 9 andpaysDEM4 2m 3 9 duetotheswap andpaysUSD25m 6 9 duetoitsUSDdebt ThenetpaymentisDEM42m 3 9 whichislessthanDEM42m 4 0 End ExchangeDEM84mforUSD50m notafairexchangeattheprevailingexchangerate3 Swapdealer Onasemiannualbasis earnsUSD 7 4 6 9 25mandlossDEM 4 2 3 9 2m PricingcurrencyswapsSetthetwofixedratesofaswapsothattheswaphasazerovalueatthetimeofinitiation Supposethatpaymentdatesaret1 t2 tn Thevalueofaswapattimet Vt basedonthedomesticcurrency Vt StBFt BDtSt exchangerate domesticpriceofoneunitforeigncurrency attimet BDt valueofdomesticfixed ratebondunderlyingtheswapwhenti t ti 1 BDt nj i 1kDe rd t tj tj t QDe rd t tn tn t wherekDisthepaymentinthedomesticcurrency QDistheprincipalamountinthedomesticcurrency BFt valueofforeignfixed ratebondunderlyingtheswap measuredintheforeigncurrency whenti t ti 1 BFt nj i 1kFe rf t tj tj t QFe rf t tn tn t wherekFisthepaymentintheforeigncurrency QFistheprincipalamountintheforeigncurrency Determiningthefixedrateattime0SetkDandkFsuchthatQD nj 1kDe rd 0 tj tj QDe rd 0 tn tnQF nj i 1kFe rf 0 tj tj QFe rf 0 tn tnThisimpliesV0 S0BF0 BD0 S0QF QD 0Thatis settwoappropriatecouponratessothatbothbondsarepricedatpar Example Counter partyAinathree yearswappaysafixedrateonaprincipalofUSD100mandreceivesafixedrateonaprincipalofDEM168m Thepaymentsaremadeonasemiannualbasis Theprincipalsweresetaccordingtotheexchangerateatthetimeofinitiation Thecurrentexchangerateis1 52DEM USD Theswaphas1 25yearstomaturity Theswapratewasdeterminedoneyearandnine monthago Atthetimeofinitiation 3 year7 2 USDbondwaspricedatpar and3 year4 2 DEMbondwasalsopricedatpar ThecurrenttermstructureforUSDandDEMarebothflatat8 and4 respectively BD 3 6e 0 25 0 08 3 6e 0 75 0 08 103 6e 1 25 0 08 100 66mBF 1 68 2 1e 0 25 0 04 2 1e 0 75 0 04 102 1e 1 25 0 04 170 08mToA V 1708 1 52 100 66 USD11 23mandtoB V USD11 23mPortfolioofforwards Acurrencyswapcanbeviewedasasequenceofforwardswithmaturities t1 t2 tnwithacommonforwardprice Forti t ti 1 1 Atti 1 St i 1 kF kD evaluatedatt ithasavalueequalto Ft ti 1 kF kD exp rDt ti 1 ti 1 t 2 Atti 2 St i 2 kF kD evaluatedatt ithasavalueequalto Ft ti 2 kF kD exp rDt ti 2 ti 2 t 3 Similarlyforti 3 ti 4 ti n 14 Atti n St i n kF QF kD QD evaluatedatt ithasavalueequalto Ft ti n kF QF kD QD exp rDt ti n ti n t 5 Thetotalvalueoftheswapattimetisthesumofalltheterms Example Continuethepreviousexample F 0 25 1 1 52exp 0 08 0 04 0 25 0 6645 F 0 75 1 1 52exp 0 08 0 04 0 75 0 6679 F 1 25 1 1 52exp 0 08 0 04 1 25 0 6916V 0 6645 2 1 1 68 3 6 e 0 08 0 25 0 6779 2 1 1 68 3 6 e0 08 0 75 0 6916 102 1 1 68 103 6 e 0 08 1 25 1 2308 1 1380 13 5986 USD11 2298m Equityswaps Twopartiesexchangeperiodicpaymentsoverafixedduration Typically oneparty spaymentsarebasedonastockindexreturnwhereasitscounter party spaymentsarebasedonabenchmark floatingrate Paymentsarecomputedusinganotionalprincipal Example Notionalprincipal 100m Counter partyAreceives3 monthLIBORandpaysS P500indexreturnplusaswapspreadof 0 1 S P500return 0 1 Company CompanyA BLIBOR ThevalueofequityswapThevalueofthisequityswapwaszeroonJan2 thetimeofinitiation ThesameistrueforApril2 July2 Oct2andJan2immediatelyafterthepaymentismade Why Thevalueofthisequityswapon sayMarch1 willnotbezero however AssumethatthefuturespriceofS P500indexfuturescontractmaturinginAprilcontractfinishedat460 1onthatday ThediscountrateonMarch1forthematurityofApril2is9 1 WhatisthevalueofswaptotheLIBORpayer TheLIBORpaymentonApril2isknowntobe225 000 Itspresentvalueis225 000 exp 0 091 32 365 223 212 ThereceiptonApril2subjecttotheS P500indexperformanceis IA2 IJ2 IJ2 0 1 100m Itspresentvalueis 460 1 469 75 0 001 469 75 100m 469 75 exp 0 091 32 365 2 137 166 Thetotalvalue 223 212 2 137 166 2 360 378 Commodityswaps Inatypicalcommodityswap onecounter partymakesperiodicpaymentstothesecondcounter partyatafixedpriceperunitforagivennotionalquantityofsomecommodity Thesecondcounter partypaysthefirstcounter partyafloatingpriceforagivennotionalquantityofsomecommodity Thecommoditiesareusuallythesame Thefloatingpriceisusuallycalculatedasanaverageprice CreditDefaultSwaps Willbediscussedinthesectionofcreditrisk Procter Gamble BankersTrustLeveragedSwap 1ThestoryOnNovember2 1993 P GandBTenteredafiveyear semiannualsettlement 200millionnotionalprincipalinterestrateswapcontractknownasthe 5 30 swap BTpaysafixedrateof5 30 andP Gpaysafloatingratedependsonthirty daycommercialpaper CP dailyaverageratelessthen75basispoints plussomespread Thekeyfactorsintheagreementarethespreadandthe75basispoints aplainvanillaswapwouldhavebeen5 3 versustheCPdailyaveragerateflat TheswapwasscheduledtolockinonMay4 1994 Becausethespreadonthelock in datewas2 750basispoints P Gexperiencedsignificantlossesandfiledalawsuit Anout of courtsettlementwasreachedinMay1996 BTagreedtoabsorb 157million 2TheP G BTleveragedswapTerm 5yearFrequency SemiannualpaymentsFixedratepayer BankersTrustat5 3 Floatingpayer P Gat30 daycommercialpaperdailyaverageratesless75Basispointsplusaspread 3ThespreadThespreadiszeroforthefirst6 monthsettlementperiod andthenwouldbefixedfortheremainingninesemiannualperiods dependingonTreasuryyieldsandpricesonthefirstsettlementdate May4 1994 accordingtotheformula Spread max 0 98 5 5 yearCMT 5 78 30 yearTYSPrice 100 5 yearCMT istheyieldonthe5 yearconstant maturityTreasurynote The30 yearTreasury TSY bondpriceisthemidpointofthebidandofferpricesonthe6 25 T bondmaturinginAugust2023 notincludingaccruedinterest ThespreadonNovember2 1993waszerobecause 98 5 5 02 5 78 102 57811 100 0 1703 ThespreadonMay4 1994wasMax 0 98 5 6 71 5 78 86 84375 100 0 2750Thusinreturnforreceivingafixedrateof5 3 theP Gwouldhavebeenobligatedtopaythe30 dayCPdailyaveragerateplus26 75 27 50 0 75 forthenextfourandonehalfyearsonthe 200millionswapiftheformulahadnotbeenamendedpriortoMay1994 4TheamendmentTheswapwasamendedinJanuary1994tomovethedeterminationdateofthespreadfromMay4 1994toMay19 1994inexchangefor13basispointsimprovementinthefloatingratesideoftheswap i e 75basispointshasbeenchangedto88basispoints Interestingly thereisaFederalOpenMarketCommitteemeetingscheduledonMay17 twodaysbeforethenewspreaddeterminationdate P GdecidedinMarch1994tolockinthespread insteadofwaitingforMay19determination Thiswasdoneinthreestageswith 50milliononMarch10 50onMarch14 andtheremaining 100milliononMarch29Allinall thespreadwaslockedinat15 Thelosscanbeestimatedatabout 106 541millioninpresentvalueterms 5WascorporatetreasurygroupatP Gabletoascertaintheriskitwasbeatinguponenteringthetransaction Alossofover 100milliononaswapwithanotionalprincipalof 200millionisextraordinary arealtestamenttothepowerofleverage Thespreadformulacanbesimplifiedto Spread max 0 0 170415 5 year CMT 0 01 30 year TSYprice Spread 0 170415 CMT 0 01 TSYPrice Using6 15 asthesix monthforwardyieldinNov 1993ontheT bondonAugust1 2023 wehave TSYPrice 13 6442 YLD Spread 0 170415 CMT 0 136442 YLD Aparallelshiftintermstructure yieldcurve willcausethespreadtomovebyafactorof0 306857 Onebasispointincreaseraisesthespreadby30 6857basispoints averybigleverage Amoveofonly58basispointsfromNovember2 1993curvewouldbeabletocoverthe75basispointcushion Eachadditionalbasispointmovedrivesthemarketvalueoftheleverageswapdownbyabout 2 389million Inaddition P GisfacingboththeCPrateandthespread Bothcomponentsarepositivelyrelatedtotheinterestrtelevel P Ggethittwiceiftheinterestratemovestogether Thisswapis therefore poorlystructure

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论