




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
译文及原文空气动力摩托车的设计与开发关键词:清洁能源 气动马达 摩托车 速度控制26摘要目前在台湾,有超过13万辆摩托车,它们主要是由内燃机驱动,同时排放气体污染物,一氧化碳(CO)和未燃烧的碳氢化合物(HC),大气中超过10的空气污染物是由这些气体影响的。研究表明,摩托车的内燃发动机可能会比汽车产生2倍以上的污染物。为了改善空气污染状况,并消除污染排气,本文提出了一种新的思路,采用压缩空气为动力源的摩托车。这种摩托车配备了空气马达而取代了内燃机,它把压缩空气的能量转换成机械能。模型是建立在理论模拟上的,并在实际道路上进行测试。实验数据表明,速度误差是为1km/h,当它的的速度超过20km/h,它的效率是在70以上。1、介绍空气污染,被认为是使地球全球变暖和气候剧烈变化的原因,很多年来一直是一个严重的问题。空气污染物的一个主要来源是运输车辆的内燃发动机通过燃烧化石燃料所产生的。车辆产生的污染物基本上有三种形式的:未燃烧的碳氢化合物(HC),一氧化碳(CO)和氮氧化物(NOx)。摩托车是作为一个臭名昭著的例子,它是在台湾最流行的交通工具数量已超过13万辆。污染物中未燃烧的碳氢化合物(HC)和一氧化碳(CO),超过10的空气中的污染物来自于摩托车 1。目前在台湾,骑摩托车很方便,它可能是受到大众的先入为主,摩托车肯定比汽车更清洁,因为摩托车更小,更轻,但是这是的确不是真相。据研究,台湾EPA1,50毫升摩托车(二冲程发动机)每公里释放的一氧化碳(CO)的质量的2.7倍和6.7倍尽可能多的未燃烧的碳氢化合物分别是同比例汽车释放的2.7倍和6.7倍。125毫升摩托车(四冲程发动机)则是汽车的2.4倍和3.1倍。如今,有许多新的类型的摩托车,包括燃料电池驱动的2-4和混合动力驱动的摩托车,混合能源包括内燃机和电动马达或气动马达等。 Sheu et al 和Tzeng曾提出了一种并联式混合动力摩托车的传输系统,以提高发动机性能。Tzeng et al等还提出了其他混合气压动力摩托车8-9中研究和开发的气动电动机与内燃机结合。先前的研究重点放在使用新的传输系统,以降低污染物的排放。那些方法可能是一个最有能力的替代品运输工具,但这些系统仍然释放到空气中的污染物数量较小。对于绿色能源的概念,在本文中,我们提出了一种新设计的摩托车,采用压缩空气作为动力源,所以对环境的污染将真正达到零排放。空气马达是将压缩空气的能量转换成机械能的装置。在一般情况下,和电动机相比它们更安全,更清洁,更便宜,具有更高的功率质量比10。在过去的几十年中,已经扩展到其它特殊的工作条件下应用,如在禁止火花的环境中,采矿厂和化学制造厂。对于大多数情况,空气马达上的设备具有较低的精度要求11。然而,高精密空调电机的需求已经在过去几年增加,因此许多研究已经进行了其动态特性1214,他们的应用程序,以取代传统的电机15。有许多类型的混合动力发动机供应运输车辆。这些引擎试图减少空气污染,但已被证明这些引擎仍然执行所述内燃机驱动的摩托车依旧比汽车产生更多的污染物。为了改善空气污染条件,并减少排放到大气中污染物,本文提出的摩托车原型是使用压缩空气作为动力源的。速度控制器的模糊逻辑也很发达,以保持恒定的速度运。了解系统的效率将通过实验数据进行分析。以下章节安排如下:第2节所述空气马达的介绍,提出了模糊控制算法;在第3节,实验结果和分析;在第4节和第5节所述结论。2、气动马达的原理图1图1显示了叶片式气动马达示意图。转子中有四个插槽,其中每一个配有一个可绕驱动轴旋转自由滑动的矩形叶片。当驱动轴开始转动时,叶片倾向于向外滑动,由于离心力的作用,转子壳体的形状是有限的。根据流动方向上,该马达可顺时针或逆时针的方向旋转。在进口和出口处的空气压力差提供所需的扭矩,在较高流速和较大的压力差下,将在轴上将得到更大的转矩和更高的转速。 空气动力的摩托车系统(其示意图如图2),包括一个气动马达(最大输出功率为4马力(hp),最大扭矩(N)13),空气罐,电子比例方向控制阀(FESTO MPVE),过滤器/调节润滑剂(新恭FRL-600),压力传感器(KEYENCE AP-C33W),空气流量计(DWYER)和一个数字信号处理器(DSP TI C240)。气流路径从储气罐通过过滤器,控制阀和最后进入空气马达。气体进入发动机由控制阀决定,控制阀的操纵将取决于由外部施加的电压,当电压等于5v时,阀门将保持在中间,左边和右边都将被关闭。将压力大于5v时,阀将移动右边,当v等于10V则完全打开,同样,如果v是小于5 V时,阀门将向左移动,电压等于0v时,阀门将全开。空气马达的方向取决于电压V是否高于或低于5 V。这些控制信号是 DSP控制输入的,用u表示,通过V= U+5并将转换到v,空气动力系统的主要元素和它们的功能列于表1图2 气动摩托车的理想原理图表1v与空气马达的旋转速度的实验结果如图3所示。u信号线性增加或线性减小,由DSP在两秒的周期内按照0 V到2.5 V再到0 V这样的循环。在图3中还可以看到盲区和滞后现象。在线性增加的过程中,电机保持静止,当u低于1 V在超过1 V,电压和转速表现出近线性关系。当电压减少从2.5 V到0 V,高速电压的关系没有遵循相同的曲线上升,但表现出非线性行为。空气马达0.8 V左右停了下来,而不是1v,类似的结果也出现在0v以下。这些现象是由于摩擦和起动转矩的供气压力下降所致。将阀门打开并调节到正常值后的很短一段时间内空气压力下降了0.8(kgf/cm2)。例如,如果空气压力设置为1(kgf/cm2) ,阀的开度的时刻,实际的空气压力将下降到0.2(kgf/cm2),这将不足以克服静摩擦,从而导致了系统的响应的延迟。空气马达的效率,被定义为空气马达的输出轴的输出能量和空气马达输入能量的比,如下表示其中,w表示空气马达的角速度,p代表空气马达从入口到出口的压力差,T表示空气马达的转矩,Q的代表压缩状态下的气流量和n(RPS)代表每秒的速度。例如,如果速度控制在5公里每小时和不同的从入口到出口的压力空气马达压差= 0.34(kgf/cm2)耐空气流值保持为Q =35(升/分钟)= 583.33(立方厘米/秒),N=2.45(RPS),T = 5(KGF厘米)。效率可以计算如下:装在摩托车后胎上的后桥齿轮是装在气动马达上齿轮大小的三倍。这意味着摩托车的速度和加速度可以通过分别转变气动马达的转速和角加速度来获得。例如:摩托车轮胎的半径是R,气动马达上的齿轮齿是Ga,装在摩托车后胎上的齿轮齿是Gt,通过解码器获得的气动马达的转速是Wa,摩托车的转速可以通过Vm=2R *Wa *Rg计算得到,在此Rg=Ga/Gm是两根轴线的齿轮比。气压、气流以及气动马达的转速的数据可直接通过实验来获得。因此,整个系统的效率可以通过Eq计算。3 粗略的控制设计实验结果显示死区应当被忽略如果想要获得好的性能。为了提升其性能,对于空气动力摩托车系统,我们采取了一个粗略的逻辑,用PI(比例积分)对系统进行控制。在这个控制器里,设计了两个连贯的步骤。首先,我们为比例积分控制器选择了最佳参数,比例控制器仅以错误及在Eq中所描述的集成为基础。(2)作为死区及反应非线性性质所产生的结果,kP和kI的选择应该根据不同的参考速度以及不同的动力学响应阶段而有所不同。因此,我们采取了粗略的逻辑控制来提升系统的性能。由于,当系统处于一个低速度范围时摩擦力及xx反应扮演者一个重要的角色,必须考虑到附加的控制输入以对这些效应进行补偿。然而,这些补偿可能会通过带来xx以及震颤而使系统的性能恶化。因此,一旦非线性效应不在是主要因素时,补偿应当予以减弱。在初始阶段,需要大的kP及kI以获取足够的控制力来克服静摩擦并改善瞬时响应。瞬时阶段后,kP及kI降至较小的数值以保持稳定阶段里较好的性能。然而,kP及kI的瞬间转换将会使性能恶化并导致一个更长的置位时间。因此,我们提出了转换的规则,该规则建立在如下一些粗略的推导规则上。如果E属于且D属于,则属于且属于(3)在此,E和D分别代表误差以及变化率,和代表了对应的粗略设置,和代表了对应的kP和kI的粗略变量,且他们对应的粗略设置分别被表示为和。尽管可以选取不同类型的隶属函数,但在这篇论文里仍然使用了三角函数,因为他们较简易。、和的隶属函数展示在了图4和图5中。在这些图表里的符号,NL, NM, NS, PS,PM,PL, ZE等代表了模糊设置。例如,NL代表了负的最大值,而PS代表了正的最小值等等。 两个模糊设置和的联立操作是首次由Zadeh16提出:图4 误差E的模糊隶属函数图5 误差率D的模糊隶属函数 图6 链条链接了后轮和气动马达 图7 路面实验图8。(a)在以空气为动力的摩托车速度。(b)在以空气为动力的摩托车速度。在此,和是表示和是E和D属于和的程度。另一个在模糊设置的“AND”操作中所使用的定义是代数乘积,为:在此文中,我们采用了后者的定义,因为他较为简易并且实施起来非常容易。去模糊化是指将一个模糊的数量转变成一个清晰的值,这个模糊数是由隶属函数所代表的。这一方式仅仅在输出隶属函数是若干模糊数的一个联合结果时有效17。在此,指标X代表了p或者i,而代表了的模糊隶属函数的最大值且代表了该隶属函数的权重值。 图10a显示了进口和出口之间压差相对应的速度。结果表明如果速度增加,压差也会增加。摩托车的骑行速度是由司机通过一个控制器的节流阀加以控制的。节流阀调节电磁阀,而电磁阀则是以入口和出口之间压力的压差为基础的。模糊PI控制规则用于根据速度确定电磁控制阀的控制电压信号。4 气动摩托车的装配和实验 一个三阳的125 cc排量的摩托车被改装以用于这个实验。摩托车的四冲程发动机,油箱,化油器、电池和废气管被拆除。同时,空气马达,一个10L空气罐(100公斤/平方厘米),一个空气过滤器和电磁控制阀被安装在摩托车上。图6显示了气动摩托车传输系统的实际装配。整体的重量,包括摩托车、空气罐和司机,大约是150公斤。路面的实际骑行测试显示在图7中。 图9 空气动力摩托车的效率,y是一个多项式渐近曲线的函数 通过应用最后一节的控制算法,摩托车速度的时间纪录展现在图8a中。这个速度设置为从5公里/小时到30公里/小时。当对高速度设置,生成较大的加速度时发现所有设置的上升时间几乎相同的。由于空气压缩和机械装置的摩擦,对于低速度设置时间延迟变得更明显。对于所有的情况,最终的速度误差小于1公里/小时。在图8 b中,司机将油门从恒速调整到更高的水平。控制器可以调整至最好的骑行速度并根据节流阀所产生的不同压力将其加以稳定。如图9,这个系统的效率,接近于一个多项式曲线y,增加更大的速度设置并接近最大限度的75%左右。当摩托车的速度高于20公里/小时且未再增加太多以达到一个更高的速度时,则效率超过了70%。相应的压力差P和气流Q展现在图10中。两种情况下,渐近曲线y几乎都线性的。这意味着P和Q基本上是同速度成正比的。较大的速度意味着,对于摩托车来说需要更大的压差和更多的空气流。摩托车的电源是一个10L / 100公斤/平方厘米的商用罐体,它由一个75S的7 kW压缩机充填。根据实验结果,使用这个罐子,摩托车在总重为150公斤时将行驶2公里。因此,电力消耗对于该摩托车将大约为0.073Kw-hr每公里。对于一个在台湾通用的内燃机摩托车三阳125(10 Hp,60公里/h)的能量消耗是每公里0.127Kw-hr每公里。尽管对于气动摩托车的模型,其效率较高,但在目前的阶段,运输距离实际上并不够。然而,可以通过装备一个较大的体积或更高的压力罐来增加距离。图9 空气动力摩托车的效率,y是一个多项式渐近曲线的函数图10。(a)空气动力摩托车在不同的速度下从入口到出口的压力差。 (b)在空气流的空气动力摩托车。 y是一个多项式函数的渐近曲线。5 结论 提出并测试了一种具有模糊逻辑控制器的气动摩托车。实验数据表明,该摩托车的速度误差控制在1公里/小时内且当其速度超过20公里/小时,对于该系统效率高于70%。同一个通用的使用内燃机的摩托车0.127Kw-hr每公里的能源消耗相比,该模型的能源消耗约为0.073Kw-hr每公里。虽然该模型效率更高,但在当前阶段,运距是远不够的。未来的研究将集中于改善其效率并且延长气动摩托车的运输距离。 参考文献1 台湾环保署,;2007。2Wang JH, Chiang WL, Shu JPH。前景:台湾的燃料电池摩托车 J能源2000;86:151-7。3Lin B。概念设计和亚洲城市一种燃料电池摩托车的建模。J能源2000;86:202-134Tso C,Chang SY。一个可行的生态市场:台湾的燃料电池摩托车。Int J氢能源2003;28:757 -62。5Sheu KB,Hsu TH。一种新颖的混合电力摩托车运输的设计和应用。应用能源2006;86-9596Sheu KB。混合动力摩托车运输系统的分析和评价。应用能源2007;84:1289 - 3047Huang KD,Tzeng SC。一种新型的平行式混合动力电动汽车。应用能源 2004,79:51 - 64。8Huang KD,Tzeng SC,Chang WC。一种混合的气动车辆的开发。应用能源2005;80:47-59。9Huang KD,Tzeng SC, Ma WP,Chang WC。可回收内燃机废气的混合气动动力系统。应用能源2005年,82:117-32。10Zhang Y, Nishi A。弧面机器人驱动的低压空气马达。机电一体化2003;13:377 - 92。11Tokhi MO,Al-Miskiry M, Brisland M。使用气动电路的空气马达实的时控制。Control Eng Pract 2001;9:449-57。12Pu J,Moore PR,Weston RH。气动马达的数字伺服运动控制。Int J Prod Res 1991;29:599 - 618。13Wang J, Pu J,Moore PR。气动马达系统的模型研究及伺服控制。Int J控制1998;71:459 - 76。14Wang J,Pu J,Wong CB,Moore PR。气动马达系统的伺服运动控制。UKACC Int Conf Control1996;1:90-5。15SR,Takemura F, Hayakawa Y,Kawamura S。一个气动马达的控制性能空气马达可以取代电动马达吗?于:IEEE国际会议上 1999年,卷,1。p。518 - 24 . .16Zadeh LA。 模糊设置。通知控制1965;8:338-53。17Mizumoto M。模糊推理和模糊控制。Computol 1989:28:32-45Design and implementation of an air-powered motorcyclesYu-Ta Shen a,*, Yean-Ren Hwang ba Department of Mechanical Engineering, National Central University, Wu-Chung Li 38, Chong-Li, Taiwan, ROCb Department of Mechanical Engineering, National Central University, Wu-Chung Li 38, Chong-Li, Taiwan 320, ROCarticle infoArticle history:Received 3 September 2007Received in revised form 17 June 2008Accepted 18 June 2008Keywords:Clean energyAir motorsMotorcycleSpeed control山东大学毕业设计论文 Currently in Taiwan, there are more than 13 million motorcycles, mostly driven by internal combustion engines, and the pollutants, carbon monoxide (CO) and unburnt hydrocarbons (HC), generated by motorcycle are responsible for more than 10% of the air pollutants released to the atmosphere. The studies show that the internal combustion engines of motorcycles may generate up to two times more pollutants than those of automobiles. In order to improve the air pollution condition and eliminate the pollutants exhausting, this paper presents a new idea of using compressed air as the power sources for motorcycles. Instead of an internal combustion engine, this motorcycle is equipped with an air motor, which transforms the energy of the compressed air into mechanical motion energy. A prototype is built with a fuzzy logic speed controller and tested on the real road. The experiment data shows that the speed error is within 1 km/h and the efficiency is above 70% for this system when the speed is over 20 km/h._ 2008 Elsevier Ltd. All rights reserved1. IntroductionThe air pollution, recently believed as the reason for causing the global warming and dramatic climate change of the earth, has been a severe problem for many years. One major source of the air pollutants is generated by burning fossil fuel through the internal combustion engines for transportation vehicles. There are basically three forms of pollutants produced from vehicles: unburnt hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen (NOx). As a notorious example, the motorcycles are the most popular transportation vehicle in Taiwan with total amount more than 13 million. The pollutants, unburnt hydrocarbons (HC) and carbon monoxide (CO), produced by motorcycles are responsible for more than 10% of the air pollutants in Taiwan 1.Currently in Taiwan, riding motorcycle or scooter is convenient and it may be preconceived by the general public that motorcycles must be cleaner burning than cars since they are so much smaller and lighter, but this is not exactly the truth. According to the studies of Taiwan EPA 1, the 50 cc scooter (two-stroke engine) emits 2.7 times as mass of carbon monoxide (CO) and 6.7 times as much unburnt hydrocarbons as automobile produced in grams per kilometer. For 125 cc scooter (four-stroke engine), it is 2.4 times and 3.1 times as much as automobile produced, respectively.Nowadays, there are many new types of motorcycle, including the fuel cell driven 24 and the hybrid energy driven motorcycles. The hybrid energy includes internal combustion engine and electric motor or pneumatic motor. Sheu et al. 56 and Tzeng7 proposed a parallel hybrid motorcycle transmission system to improve the transmission power performance. Tzeng et al. also presented other hybrid pneumatic power in motorcycle 89 to investigate and develop the pneumatic motor combined with internal combustion engine. The previous studies focus on using the new transmission system to lower the pollutant emission.These methods may be the one of the most capable substitute transportation, but these systems are still releasing a smaller amount of pollutants into the air. For the conception of green energy,in this paper, we propose a new design of motorcycle which uses the compressed air as its power source so that it will be truly free of pollution for the environment. The air motors convert the energy of compressed air into the mechanical transportation energy. In general, they are safer, cleaner,cheaper and with higher power-to-weight ratio compared to electrical motors 10. During past decades, their industrial applications have been increased for special working conditions, such as in spark-prohibited environments, mining plants, and chemical manufactories. For most cases, the air motors has been employed on the equipments with lower precision requirement 11. However,the demand for high precision air motors has been increasing during past few years, and hence many researches have been conducted for their dynamic characteristics 1214 and their applications to replace traditional electrical motors 15.There are many types of hybrid engine to apply for the transportation vehicle. The purpose of these engines is trying to reduce air pollution, but these engines are still implementing the internal combustion engine which driven motorcycles have been shown generating more pollutants than those of automobiles. In order to improve the air pollution condition and eliminate the pollutants exhausting to the atmosphere, a prototype motorcycle using a compressed air as its power source is presented in this paper. A fuzzy logic speed controller is also developed to maintain the constant speed motion. The efficiency of the overall system will be analyzed through the experiment data. The following sections are organized as follows: the introduction to air motor is described in Section 2, the fuzzy control algorithm was presented in Section 3, the experiment results are shown and analyzed in Section 4 and the conclusion is stated in Section 5.2. The principles of an air motor Fig. 1 shows the sketch map of a vane-type air motor. There is a rotational drive shaft with four slots, each of which is fitted with a freely sliding rectangular vane. When the drive shaft starts to rotate,the vanes tend to slide outward due to centrifugal force and are limited by the shape of the rotor housing. Depending on the flow direction, this motor will rotate in either clockwise or counterclockwise directions. The difference of air pressure at the inlet and outlet will provide the torque required to move the shaft.Hence, the higher flow rate and the larger pressure difference will provide larger toque on the shaft and higher rotational speed.The air-powered motorcycle system, with its schematic diagram shown in Fig. 2, consists of an air motor (GAST 6AM, max output power is 4 horsepower (hp) and max torque is 13 (N m), an air tank, an electronic proportional directional control valve (FESTO MPVE), a filter/regulator with lubricant (SHAKO FRL-600), a pressure sensor (KEYENCE AP-C33W), an airflow meter (DWYER) and a digital signal processor (DSP TI C240). The airflow path starts from the air tank through the filter, control valve and finally enters the air motor. The airflow entry into motor will be determined by the valve position, which is controlled by externally applied voltage,denoted by v. When v equals 5 voltage (V), the valve will stay at the middle and both left and right entries will be closed. The valve will move to a right position when v is above 5 V and fully open when v is equal to 10 V. Similarly, the valve will move left if v is less than 5 V and will be fully opened at 0 V. The direction of the air motor depends on whether the voltage v is above or below 5 V. The control input from DSP, denoted by u, will be converted into v as v = u + 5. The major elements of air dynamic system and their functions are listed in Table 1.The experiment results between v and the rotational speed of the air motor is shown in Fig. 3. The signal of u was either linearly increased or linearly decreased by DSP following the cycle 0 V 2.5 V 2.5 V 0 V with a two-second period. The deadzone and hysteretic phenomena were found as shown in Fig. 3. During the increasing procedure, the motor remained motionless when u was set less than 1 V. After exceeding 1 V, the voltage and rotational speed demonstrated near linear relationship. When the voltage was reduced from 2.5 V to 0 V, the speedvoltage relationship did not follow the same curve of rising up but demonstrated a nonlinear behavior. The air motor stopped around 0.8 V instead of 1 V. Similar results were found for u below 0 V. These phenomena were due to the friction in the mechanism and the pressure drop of the supply air at the starting moment. The air pressure was found dropping about 0.8 (kgf/cm2) at the moment of valve opening and returning to its normal values after a short period of time. For instance, if the air pressure was set to 1 (kgf/cm2), the actual air pressure at the moment of valve opening will drop to 0.2 (kgf/cm2), which was not enough to overcome the static friction and hence caused the delay the systems response.The efficiency of an air motor is defined as the ratio of the output shaft energy to the input energy of air motor as follows 8where w (rad/s) represents the angular velocity of the air motor, Dp(kgf/cm2) represents the different pressure from inlet to outlet of air motor, T (kgf cm) represents the torque of the air motor, Q (cm3/s) represents the airflow value under compressed condition and n (rps) represents the revolution per second. For instance, if the velocity is controlled at 5 km/h and the different from inlet to outlet pressure of air motor is Dp = 0.34 (kgf/cm2), and the airflow value is kept as Q = 35 (L/min) = 583.33 (cm3/s), n = 2.45 (rps), T = 5 (kgf cm). The efficiency can be calculated as follows: The rear gear assembled on the motorcycles rear tire is three time of that of the gear connected to the air motor. This means that the velocity and acceleration of the motorcycle can be obtained by converting the air motor rotational speed and angular acceleration,respectively. For instance, the radius of motorcycle tire is R, the teeth of gear connected to the air motor is Ga, the teeth of gear assembled on the motorcycles rear tire is Gt, the air motor rotational speed is wa from the encoder, the motorcycle speed can be calculated as Vm = 2pR _ wa _ Rg, where Rg,Ga=Gm is the gear ratiobetween two axes. The data of the air pressure, air flow and the rotational speed of the air motor can be directly measured during the experiment. Therefore, the efficiency of the overall system can be calculated through Eq. (1).3. Fuzzy control designThe experiment results shown that the dead-zone and hysteretic behavior should not be neglected if one wishes to achieve good performance. In order to improve the performance, we implemented a fuzzy logic with PI (proportional integral) control scheme for the air motorcycle system. Two major consecutive steps were designed in this controller. First, we tried to choose best parameters for proportional integral controller only based on the error and its integration as described in Eq. (2)As a result of the nonlinear properties of dead-zone and hysteretic behaviors, the selections of kP and kI should be different for different reference speeds and also for different stages of the dynamic responses. Hence, we implemented the fuzzy logic control to improve the system performance.Because the friction and hysteretic behaviors played a significant role when system was at low speed range, the additional control inputs must be considered to compensate these effects.However, these compensations may deteriorate the system performance by introducing large overshoot and chattering. Hence, t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1.2 化学实验与科学探究说课稿-2024-2025学年九年级化学人教版(2024)上册
- 6.2.1.排列教学设计-2023-2024学年高二下学期数学人教A版(2019)选择性必修第三册
- 灌区管理考试题目及答案
- 古代学子考试题目及答案
- 公司贷款考试题目及答案
- 工会干事考试题及答案
- 2025仓库抵押借款合同
- 高级火影考试题目及答案
- 社区智慧养老服务体系的优化与创新方向
- 居住区景观适老化元素的视觉感知与认知分析
- T/CHES 98-2023取水口设施标准化建设与管理技术规程
- 专项项目贡献证明书与业绩认可函(8篇)
- 2025年广东省广州市中考二模英语试题(含答案)
- 消防员心理测试题库及答案解析
- 贷后管理协议合同
- 罗才军《少年闰土》省公开课一等奖全国示范课微课金奖课件
- 放射科造影剂过敏反应应急处理预案
- 触电事故应急演练方案
- 2025年上海市高考英语热点复习:阅读理解说明文
- (完整版)八上新闻拟标题专项训练题
- 国家管网集团合同范本
评论
0/150
提交评论