




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-本文为网络收集精选范文、公文、论文、和其他应用文档,如需本文,请下载-三角函数与数学思维的论文本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!现代教育强调“知识结构”与“学习过程”,目的在于发展学生的思维能力,而把知识作为思维过程的材料和媒介。只有把掌握知识、技能作为中介来发展学生的思维品质才符合素质教育的基本要求。数学知识可能在将来会遗忘,但思维品质的培养会影响学生的一生,思维品质的培养是数学教育的价值得以真正实现的理想途径。 教育心理学理论认为:思维是人脑对事物本质和事物之间规律性关系概括的间接的反映。思维是认知的核心成分,思维的发展水平决定着整个知识系统的结构和功能。因此,开发高中学生的思维潜能,提高思维品质,具有十分重大的意义。 思维品质主要包括思维的灵活性、广阔性、敏捷性、深刻性、独创性和批判性等几个方面。思维的灵活性是建立在思维广阔性和深刻性的基础上,并为思维敏捷性、独创性和批判性提供保证的良好品质。在人们的工作、生活中,照章办事易,开拓创新难,难就难在缺乏灵活的思维。所以,思维灵活性的培养显得尤为重要。 思维的灵活性指思维活动的灵活程度,指善于根据事物的发展变化,及时地用新的观点看待已经变化了的事物,并提出符合实际的解决问题的新设想、新方案和新方法。学生思维的灵活性主要表现于:(1)思维起点的灵活:能从不同角度、不同层次、不同方法根据新的条件迅速确定思考问题的方向。(2)思维过程的灵活:能灵活运用各种法则、公理、定理、规律、公式等从一种解题途径转向另一种途径。(3)思维迁移的灵活:能举一反三,触类旁通。 如何使更多的学生思维具有灵活特点呢?我在教学三角函数中作了一些探索: 1以“发散思维”的培养提高思维灵活性 美国心理学家吉尔福特提出的“发散思维”的培养就是思维灵活性的培养。“发散思维”指“从给定义的信息中产生信息,其着重点是从同一的来源中产生各种各样为数众多的输出,很可能会发生转换作用。” 在当前的数学教学中,普遍存在着比较重视集中思维的训练,而相对忽视了发散思维的培养。发散思维是理解教材、灵活运用知识所必须的,也是迎接信息时代、适应未来生活所应具备的能力。 引导学生对问题的解法进行发散;在教学过程中,用多种方法,从各个不同角度和不同途径去寻求问题的答案,用一题多解来培养学生思维过程的灵活性。 通过一题多解引导学生归纳证明三角恒等式的基本方法:(1)统一函数种类;(2)统一角度;(3)统一运算。一题多解可以拓宽思路,增强知识间联系,学会多角度思考解题的方法和灵活的思维方式。 引导学生对问题的结论进行发散;对结论的发散是指确定了已知条件后没有现成的结论让学生自己尽可能多地探究寻找有关结论,并进行求解。 开放型题目的引入,可以引导学生从不同角度来思考,不仅仅思考条件本身,而且要思考条件之间的关系。要根据条件运用各种综合变换手段来处理信息、探索结论,有利于思维起点灵活性的培养,也有利于孜孜不倦的钻研精神和创造力的培养。 2以思维灵活性的提高带动思维其他品质的提高,以思维其他品质的培养来促进思维灵活性的培养 由于思维的各种品质是彼此联系、密不可分的,处于有机的统一体中,所以,思维其他品质的培养能有力地促进思维灵活性的提高,下面就思维品质中一些性质谈点感悟。 思维的深刻性指思维过程的抽象程度,指是否善于从事物的现象中发现本质,是否善于从事物之间的关系和联系中揭示规律。 方程sinxlgx的解有( )个。(a)1(b)2(c)3(d)4 学生习惯于通过解方程求解,而此方程无法求解常令学生手足无措。若能运用灵活的思维换一个角度思考:此题的本质为求方程组 的公共解。运用数形结合思想转化为求函数图家交点问题,寻求几何性质与代数方程之间的内在联系。通过知识串联、横向沟通牢牢抓住事物的本质,在思维深刻性的基础上,思维灵活性才有了用武之地。 思维的敏捷性指思维活动的速度。它的指标有二个:一是速度,二是正确率。具有这一品质的学生能缩短运算环节和推理过程。思维灵活性对于思维速度和准确率的提高起着决定性作用。 相邻边长为a和b的平行四边形,分别绕两边旋转所得几何体体积为va(绕a边)和vb(绕b边),则va:vb( ) (a)a:b (b)b:a (c)a2:b2 (d)b2:a2 用直接法求解:以一般平行四边形为例。如图,可求: 则va:vbb:a,由于要引入两边夹角 来求解,学生常常无法入手。若以特殊的平行四边形(矩形)来处理,则相当简便。 此题解法充分体现了思维灵活性,以简驭繁,用特殊化思想求解,解题迅速、正确。 思维的独创性指思维活动的独创程度,具有新颖善于应变的特点。思维的灵活性为思维的独创性提供了肥沃的土壤,为解题“灵感”的闪现提供了燃料。 思维的批判性指思维活动中独立分析的程度,是否善于严格地估计思维材料和仔细地检查思维过程。在教学中,鼓励学生提出不同的甚至怀疑的意见,注意引导和启发,提倡独立思考能力的培养。 学生对结论的可靠程度进行怀疑,在独立分析的基础上,灵活运用三角函数的单调性来确定三角形内角的取值范围,严密论证了三角函数值取值的可能性。 灵活的构想独特巧妙,数形结合思想得到充分体现。教学中注重学生解题思路的独特性、新颖性的肯定和提倡,充分给予尝试、探索的机会,以活跃思维、发展个性。 几年来,所教学生在经过有目的的培养后,思维品质都有了很大的提高。相应的,学生的学习质量也有了很大提高。许多学生进入大学、甚至走上工作岗位后,常常来信谈及虽然数学知识有许多已经遗忘,但老师教的数学思维方式却常令他们在工作、学习、生活中得益不少。随着课程教材改革的推进,突出思维品质的培养已成为广大教师和教育工作者的共识。我将继续探索下去,以求获得更多的教育理论与教育方法。 参考文献: 1 中学生学习心理学 编写组著 广东高等教育出版社 2 数学教育学 田万海著 浙江教育出版社 3 中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025电子商务平台用户增长与活跃度提升合同
- 2025年劳动合同制员工劳动合同解除备案合同
- 2025年大货车货运信息平台会员服务合同
- 2025沉井劳务分包及施工技术监督合同协议书
- 2025年度房地产项目开发合作合同及协议书
- 2025年度抵押借款合同法律效力及履行监督协议
- 2025年度派遣至亚洲地区员工文化交流合同
- 2025版生物科技企业研发人员劳动合同集锦
- 2025年度数据中心施工图设计合同范本
- 说课的基本步骤
- 2024考研 政治 思维导图(马原)
- 医疗设备定期检修方案
- 2023中电信数智科技有限公司白皮书
- 办公楼物业管理服务(技术方案)
- 私募股权投资基金的会计处理全解析
- 高级高炉炼铁操作工技能鉴定考试题及答案
- 前置公司协议书范本
- 房产中介居间服务合同
- 养老院预防老人食品药品误食
- 大学生创业基础2000116-知到答案、智慧树答案
- (正式版)YBT 6328-2024 冶金工业建构筑物安全运维技术规范
评论
0/150
提交评论