



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.破解数列求和的6种常见方法数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种方法进行系统探讨。一 、公式求和法通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式求和,或者利用前个正整数和的计算公式等直接求和。因此有必要熟练掌握一些常见的数列的前项和公式.正整数和公式有: 例1 已知数列的前项和为,且若,求数列的前项和分析:根据数列的项和前项和的关系入手求出再根据()求出数列的通项公式后,确定数列的特点,根据公式解决. 【解析】当时,当时,适合上式,即,是首项为4、公比为2的等比数列.【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题.二、分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如:,其中例2 已知数列的通项公式为求数列的前项和.分析:该数列的通项是由一个等比数列与一个等差数列组成的,所以可将其转化为一个等比数列与一个等差数列进行分组求和.【解析】=【能力提升】在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成等差数列或等比数列,那么我们就可以用此方法求和.三、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可用此法来求和.例3 已知数列是首项为公比为的等比数列,设,数列满足求数列的前项和分析:根据等比数列的性质可以知道数列为等差数列,这样数列就是一个等差数列与一个等比数列对应项的乘积构成的数列,因而可考虑用错位相减法来解决.【解析】由题意知,又,故,.,于是两式相减,得.【能力提升】错位相减法适用于数列,其中是等差数列,是等比数列.若等比数列中公比未知,则需要对公比分两种情况进行分类讨论.四、倒序相加法如果一个数列,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前项和即可用倒序相加法.例4 已知函数求分析:由所求的和式的特点,易想到探究:和为1的两个自变量函数值的和是否为常数.从而确定可否用倒序相加法求和.【解析】因为所以设, + 得: ,所以【能力提升】倒序相加法来源于课本,是等差数列前项和公司推导时所运用的方法,它是一种重要的求和方法。当求一个数列的有限项和时,若是“与首末两端等距离”的两项和都相等,即可用此法.五、裂项相消法把数列的通项分成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.适用于类似(其中是各项不为0的等差数列,为常数)的数列,以及部分无理数列和含阶乘的数列等.用裂项法求和,需要掌握一些常见的裂项方法: 例5 数列 满足 ,求 分析:根据给出的递推式求出数列,再根据的特点拆项解决. 【解析】由已知条件,得,是以为首项,为公比的等比数列,故,【能力提升】用裂项相消法求和的关键是先将形式复杂的式子转化为两个式子的差的形式因此需要掌握一些常见的裂项技巧.六、并项求和法针对一些特殊的数列,将其某些项合并在一起就具有某种特殊的性质,因此,在求数列的前项和时,可将这些项放在一起先求和.例6 数列的前项和是,若数列的各项按如下规则排列:若存在自然数,使,则 .分析:数列的构成规律是分母为2的一项,分母为3的两项,分母为4的三项,故这个数列的和可以并项求解.【解析】而这样,而故,故填 【能力提升】当一个数列连续的几项之间具有明显的规律性,特别是一些正负相间或者是周期性的数列等,可以考虑用并项求和的方法.一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和。高考数学试题中所涉
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 61496-3:2025 EN Safety of machinery - Electro-sensitive protective equipment - Part 3: Particular requirements for active opto-electronic protective devices responsive t
- 【正版授权】 IEC 61400-5:2020/AMD1:2025 EN Amendment 1 - Wind energy generation systems - Part 5: Wind turbine blades
- 重庆汽车培训理论知识课件
- 重大安全发现管控课件
- 老年人糖尿病护理课件
- 老年人播音主持课件
- 老年人应急知识培训方案课件
- CN120204435A 一种综合药品稳定性实验箱灭菌控制方法及系统
- 水工监测工-渗流观测考试题库
- 第三节 第3课时 难点专攻夺高分-与圆有关的综合问题 2026年高三数学第一轮总复习
- 2025四川德阳经济技术开发区管理委员会考核招聘事业单位人员3人笔试备考试题及答案解析
- 2025至2030中国课外辅导行业发展研究与产业战略规划分析评估报告
- 电梯维护保养标准作业指导书
- 纪念西路军课件
- 一年级书法教学设计方案
- 排球队朱婷史记课件
- 2025年中国烟花爆竹协会烟花工艺师认证考试模拟题及答案
- 网络机房建设方案:规划、设计及实施指南
- 饮料厂合作合同协议书模板
- 医院风险评估体系构建与实施
- 2025年初级注册安全工程师(其他安全)历年参考题库含答案详解(5套)
评论
0/150
提交评论