




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
. . . .学生:_ 科目: 教师:_ 第 阶段第 次课 时间:20_年_月_日_ _段一、授课目的与考点分析:二、授课内容:知识点:函数的概念、映射、函数的定义域和值域重点难点1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。一教学过程:1. 熟练掌握函数的概念和映射的定义;2. 能够根据已知条件求出函数的定义域和值域;3. 掌握函数的三种表示方法。二教学内容: 1函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数(function),记作:其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range)。显然,值域是集合B的子集。注意: “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x2.构成函数的三要素定义域、对应关系和值域。3、映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。4. 区间及写法:设a、b是两个实数,且a0)的函数,m0就是单调函数了三种模型:(1)如,求(1)单调区间(2)x的范围3,5,求值域(3)x -1,0 )(0,4,求值域 (2)如 ,求(1)3,7上的值域 (2)单调递增区间(x0或x4)函数的基本性质(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法 (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。(1)判断或证明函数的单调性;(2)奇偶性概念的形成与函数奇偶性的判断。一、 函数的单调性1单调函数的定义(1)增函数:一般地,设函数的定义域为:如果对于属于内某个区间上的任意两个自变量的值、,当时都有,那么就说在这个区间上是增函数。(2)减函数:如果对于属于I内某个区间上的任意两个自变量的值、,当时都有,那么就说在这个区间上是减函数。(3)单调性:如果函数在某个区间是增函数或减函数。那么就说函数在这一区间具有(严格的)单调性,这一区间叫做的单调区间。2、单调性的判定方法(1)定义法:判断下列函数的单调区间:(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。(3)复合函数的单调性的判断: 设,都是单调函数,则在上也是单调函数。若是上的增函数,则与定义在上的函数的单调性相同。 若是上的减函数,则与定义在上的函数的单调性相同。即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为增减函数。也就是说:同增异减(类似于“负负得正”)练习:(1)函数的单调递减区间是 ,单调递增区间为 (2)的单调递增区间为 3、函数单调性应注意的问题:单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数)函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数4例题分析证明:函数在上是减函数。证明:设任意,(0,+)且,则,由,(0,+),得,又,得,即所以,在上是减函数。说明:一个函数的两个单调区间是不可以取其并集,比如:不能说是原函数的单调递减区间;练习:1根据单调函数的定义,判断函数的单调性。2根据单调函数的定义,判断函数的单调性。二、函数的奇偶性1奇偶性的定义: (1)偶函数:一般地,如果对于函数的定义域内任意一个,都有,那么函数就叫做偶函数。例如:函数, 等都是偶函数。(2)奇函数:一般地,如果对于函数的定义域内任意一个,都有,那么函数就叫做奇函数。例如:函数,都是奇函数。(3)奇偶性:如果函数是奇函数或偶函数,那么我们就说函数具有奇偶性。说明:从函数奇偶性的定义可以看出,具有奇偶性的函数:(1)其定义域关于原点对称;(2) 或必有一成立。因此,判断某一函数的奇偶性时,首先看其定义域是否关于原点对称,若对称,再计算,看是等于还是等于,然后下结论;若定义域关于原点不对称,则函数没有奇偶性。(3)无奇偶性的函数是非奇非偶函数。(4)函数既是奇函数也是偶函数,因为其定义域关于原点对称且既满足也满足。(5)一般的,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数。偶函数的图象关于轴对称,反过来,如果一个函数的图形关于轴对称,那么这个函数是偶函数。(6)奇函数若在时有定义,则2、函数的奇偶性判定方法(1)定义法(2)图像法(3)性质罚3例题分析:判断下列函数的奇偶性:(1) ( ) (2)( )说明:在判断与的关系时,可以从开始化简;也可以去考虑或;当不等于0时也可以考虑与1或的关系。五小结:1函数奇偶性的定义; 2判断函数奇偶性的方法;3特别要注意判断函数奇偶性时,一定要首先看其定义域是否关于原点对称,否则将会导致结论错误或做无用功。二、函数的最大值或最小值经典例题1下面说法正确的选项( )A函数的单调区间可以是函数的定义域B函数的多个单调增区间的并集也是其单调增区间C具有奇偶性的函数的定义域定关于原点对称D关于原点对称的图象一定是奇函数的图象2在区间上为增函数的是( )AB C D3函数是单调函数时,的取值范围( )A B C D 4如果偶函数在具有最大值,那么该函数在有( )A最大值 B最小值 C 没有最大值D 没有最小值 课后作业 1在区间(0,)上不是增函数的函数是( )Ay=2x1By=3x21Cy=Dy=2x2x12函数y=(x1)-2的减区间是_ _3偶函数在上单调递增,则从小到大排列的顺序是 ;4已知是R上的偶函数,当时,求的解析式。5(12分)判断下列函数的奇偶性; ;三、本次课后作业:四、学生对于本次课的评价: 特别满意 满意 一般 差 学生签字:五、教师评定:1、 学生上次作业评价: 好 较好 一般 差2、 学生本次上课情况评价: 好 较好 一般 差 教师签字: 教研组签字: 教务处签字: 教务处盖章: 20 年 月 日1. 若不给自己设限,则人生中就没有限制你发挥的藩篱。2. 若不是心宽似海,哪有人生风平浪静。在纷杂的尘世里,为自己留下一片纯静的心灵空间,不管是潮起潮落,也不管是阴晴圆缺,你都可以免去浮躁,义无反顾,勇往直前,轻松自如地走好人生路上的每一步3. 花一些时间,总会看清一些事。用一些事情,总会看清一些人。有时候觉得自己像个神经病。既纠结了自己,又打扰了别人。努力过后,才知道
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 笔记本电脑长寿命电池创新创业项目商业计划书
- 水产品智能穿戴设备创新创业项目商业计划书
- 2025年富锦市消防员考试笔试试题(含答案)
- 渔业智能化管理系统升级创新创业项目商业计划书
- 农产品民宿经营创新创业项目商业计划书
- 网站流量提升解决方案创新创业项目商业计划书
- 2025年工业互联网平台微服务架构性能测试与边缘计算资源管理分析
- 2025年物流园区仓储设施节能环保评估报告
- 2025年肿瘤早筛技术在肿瘤患者全程管理中的应用前景报告
- 山东省菏泽市开发区2020-2021学年第一学期五年级科学期中考试试题(含答案)
- 膀胱炎护理课件
- 搅拌站建设可行性研究报告
- 插秧劳动指导课件
- 幕墙施工培训课件
- 2025年北京东城二中学英语八下期末联考试题含答案
- 2025届安徽省蒙城县英语七下期末考试试题含答案
- 设备巡回检查管理制度
- 产房安全核查管理制度
- 阿尔茨海默症的护理
- (2025)公共基础知识考试试题附及答案
- 中国五矿笔试题库及答案
评论
0/150
提交评论