




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
假重复和野外生态学试验的设计摘要:假重复是指“在进行推论统计以检验处理效果时, 使用的数据来自于未设置重复的试验 (尽管可能存在多个抽样) 或者来自于虽然存在重复但统计上不独立的实验”。在方差分析中,它是指使用不适宜假说的误差项来检验处理效果。通过查看1960 1984年发表的176个试验研究,我们发现在全部试验中有27%,或者说在使用统计检验的文章之中有 48%存在“假重复”。在研究海洋底栖生物和小型哺乳动物时,假重复的发生率特别高。本文综述总结了控制试验的关键特性。“偶然事件干扰”(nondemonic intrusion)是指在一个试验进行中偶然事件的影响。作为对偶然事件干扰和渐变干扰的预防,处理的布局被认为是良好试验设计的必要特性用词不当。尤其是在小规模试验中,有时仅通过避免严格的随机化程序就能保证恰当的试验布局。区分预布局(或常规)和特定布局可以辅助理解试验布局和随机化之间的冲突(i类错误:即本来原零假设是正确的,而根据样本得出的统计量的值落入了拒绝域,根据检验拒绝了正确的原零假设)。本文章为统计人员和生态学学术期刊的编辑加深对试验设计的理解和,同时也提出了改善这个问题的建议。没有人会想到通过比较2个试验组(一个处理,一个未处理)来检验对一个试验处理的响应。-r.a. fisher & j. wishart (1930)野外生态学试验(通常)要么没有重复,或者要么只有很少的重复,因此不能很好的解决问题-l.l. eberhardt (1978)我不知道为什么一些人提倡一个不受欢迎的原因同上,除非这个人是被刺激过的或没用的。-bertrand russell (clark 1976:290)简介下面的论述是批判生态学家们如何设计和分析他们的野外试验的。也可以作为一个试验设计的勘探基础。我的方法是:(1)讨论一些常见的试验方法和统计误区,(2)引用大量的研究,对这些问题进行举例,(3)提出一些现在缺乏特定分类的新的是否有歧义术语和概念,(4)提倡将处理布局作为一个好的设计的必要特点,(5)给编辑一些可以很快的改善这个问题的方法。我认为大多数关于试验设计或统计方面的书籍,根本没有或者只有一些简单的基础,极少有关于设计错误的实验的例子以及关于种群、群落或生态系统水平的系统的实验方法的例子。以技术数学和机械方面的为主题的书占据这些书的大部分,这是适当应当的,但它们这也只是分散在那些只寻基本原则的书中。我在这里省略所有数学的讨论。引用特定研究对本文的有效性是至关重要的。避免提及具体的负面例子相当于放弃一个强大的教学法。过去的评论太过于礼貌甚至是歉意的,以下例子可以说明:野外试验中还有很多要改进的地方。关于正确的方法我将列出我的观点,而不是批评特定实例(connell, 1974)在此综述中,作者通常避免批评实验设计,、缺乏研究性的引用和以及结论中作为结果的统计缺点,这足够说明大多数研究在这些方面是有缺陷的。(hurlbert, 1975)当我写我的评论时,我似乎只挑剔细节,这必然会有个被大家责骂的总效应我希望那些我作为例子引用的作品会原谅我。我真诚地欣赏这些论文的质量(hayne, 1978)在查阅的151篇论文中,遇到了一些常见的问题这些讨论对于个人的论文可能是无不利的和甚至是不友好的(underwood, 1981)因为我在这里既不是匿名的批判也不是盲目的赞赏,我只是表明一个显而易见的事实 调查的质量不仅仅取决于良好的试验设计,所以良好的试验设计本身并不能保证研究的价值。本评论不评估任何作品的总体质量。他们中的大多数,尽管有设计或统计数据上的错误,然而都包含有用的信息。另一方面,当评论人员试图通过特定领域的研究而强调评论的积极性时,他们的选择有时似乎是不合适的。例如,connell(1974)引用了boaden(1962)的“控制野外试验的最好例子之一”;和chew(1978)引用spitz(1968)的“关于植物对小型哺乳动物捕食的反应的最好例子”。然而两篇被引用的文章的实验处理都没有设置重复,因此两个实验都不受随机因素的控制(spitz, 1968)。此外,误用统计、处理重复的样方就犹如他它们代表了重复的试验单位。这里所提出的新术语都是精心挑选的。也许数学统计学家会认为他们是不雅的,但我觉得他们至少对生态学家,以及其它他与试验设计有关的人是有帮助的。统计和试验设计是一个词汇贫乏的科目。这篇文章的大部分是关于一个统计学家称之为“随机化”、“重复”、“独立”或“误差项”的问题,但这些概念可以应用在一个试验中的许多方面,他们以不同的方式运用到不同类型的试验中。例如,在设计试验中,重复可以在不同的层次(如楼群、试验单位、样本、亚样本等)上设置,在许多时候重复可能是多余的或可选的可做可不做的,但通常有至少一个试验单位的重复是必须的,至少在假设显著性测定中会使用。同样的,术语“误差”是用于许多不同地方或概念的的简单方法,包括:i型和ii型错误、随机和试验者引起的系统误差、组内的变异,样本中的变异,p和x的差异,等等。稍微扩大词汇量,尤其是为各种类型的错误步骤提供术语,就可以为我们提供方便可以方便我们。我从初级水平开始这个讨论,假设读者已经有相当于一学期课程的统计基础,但没有试验设计的基础。事实上,用这种方法会使整个文章显得太初级而不像生态学家写的。但是我希望我的前提和论点是明确、清晰的,如果有错误也是易于被攻击的。并且,这是试验设计的基本原理,而不是先进或深奥的以及频繁和严重违反了生态学家的东西。试验方法一个试验有五个组成部分:假设、试验设计、试验执行,统计分析和解释。显然这个假设是最重要的,因为如果假设按照的一些“标准”不是好的,甚至一个做的很好的试验都是没有什么价值的。试验设计也就是“试验的逻辑结构”(fisher1971:2)。一个试验目标的完整描述应该指定试验单位的性质,数量和处理的类型(包括“控制”处理),测量的试验单位的属性或响应。一旦这些已经决定,一个试验设计就明确了哪个试验单位怎么处理,试验单位的重复数目。试验单位的物理布局。什么时间对不同的试验单位怎么处理。一个试验的执行是试验设计中所有步骤和操作的实施。成功的执行取决于试验者的艺术性、洞察力和良好的判断力,以及他的技术技能。当眼前的目标是简单的技术操作行为的试验时,想要成功的执行要求试验者就要避免引入系统误差(偏见),减少随机误差。比如说检验ddt的影响,那么ddt必须不能含有硫、磷。如果检验一个潮间带的捕食者的效果,通过使用排除笼子来检测,那么笼子必须在系统变量中除了捕食者外没有直接的影响。如果研究营养对池塘浮游生物的影响,浮游生物必须用相关设备对其进行取样,此技术不依赖于浮游生物丰富度。如果在处理、取样或测量过程中出现试验误差,试验将是无效或不确定的。试验单元之间的异质性到什么程度是允许的或者可行的,或者在试验过程中环境因子的调节限度也是有存在主观判断的问题。这些决定会影响随机误差的大小和试验的灵敏度。他们也会影响到具体的结果解释,但他们无法通过自身影响试验的形式有效性。从前面所讲的来看,很明显,试验设计和试验的执行对一个试验的有效性和灵敏度具有同等的责任。然而在实际意义上,相对于设计而言,执行是一个试验更关键的方面。在试验执行中的错误通常可以在试验中以一个更大数量的形式在试验中出现,这往往比设计错误更精细。因此,对试验者和其报告的读者而言,执行错误一般比设计错误更难被发现,两者都是对试验者和他们报告的读者而言。就正是由于这些未被发现的或发现不了的潜在错误的潜在的影响使,试验的执行才至关重要。尽管他们执行错误作为一个问题的来源有很重要的地位,执行错误但在这里不再对其做进一步考虑。在试验工作中,统计学的主要功能是使统计数据清晰、简洁及客观,给出结果并解释。统计分析和解释是试验最不重要的方面,如果只是纯粹的统计或解释所犯的错误,这些数据可以被再分析。另外一方面,唯一完整的对设计或执行错误的唯一完整的补救是做重复试验。测定性试验 试验可以分为测定性试验和控制性试验两种。测定性试验只涉及一个或多个点在空间或时间里的测量,空间和时间是唯一的“试验”变量或“处理”。测试的重要性可能不会被认可。测定性试验通常不涉及在对试验室试验人员的一些外部因素的强加。如果他们确实涉及这样一种强加(比如,比较了高海拔的橡树与低海拔的橡树对试验中落叶的反应),所有试验试验单位将被视为一样的)。例1。为了确定在湖底1米的水深处槭树叶分解速度。,我们做了八个尼龙网小袋,每个都用槭树叶填满,将它们以小组形式放置在水下l米等深线处水下放置。一个月后检查这些袋子,确测定每个袋子中有机物质量的数量损失去了多少(“分解”),并计算平均分解率。就其实验本身而言这个过程是令人满意的。然而,它他没有注意到沿着l米等深线从一个点到另一点分解速度会有不同的信息;平均速度可以用八个叶袋计算。概括关于“在湖的l米等深线的分解率”这是很草率的。仅仅由于测量过程很复杂,这样一个过程通常就被称为试验仅仅是由于测量过程很复杂,经常涉及系统的干预或”“刺激”。如果我们在无脊椎动物试验中测量了八个温度或八个海泥样本,很少人会认为这些过程和他们的结果是“试验”。语义改革上的努力将是徒劳的。从历史的角度看,“试验”总是以“困难”、“复杂”和“干涉”作为其共同的含义,并不可避免地将会继续这样。这个测定性试验可以帮助我们记住这个方法其和控制试验的区别。区别主要是,在抽样和狭义的试验中,关于测定性试验的设计的建议在大部分的书籍中是可以找到的,如抽样技术(cochran1963)或进行普查和调查的抽样方法(yates 1960),而不是在书中以单词“设计”为标题。可以比较的测定性试验例2。继续使用例1的例子,来测试槭树叶的分解率在一米和十米的等深线下是否相同。我们在一米等深线设置八个叶包,在十米级等深线设置另外八个叶包,一个月后取回,并获取数据。然后我们用统计分析(如t检验或u检验)来看看这两个位置是否有显著差异。我们可以称之为一个比较测定性试验。虽然我们使用两个等深线(或“处理”)和显著性检验,我们仍没有进行真正的控制试验。我们仅仅是测量一个系统的两个点的特性并观察在它们之间是否有一个真正的差异(“处理效果”)。在示例1中为了实现我们的目的,也许这八个袋子在一米等深线下的任何类型的分布都是足够的。在示例2中,然而,我们已经表明我们的目标是两个等深线下槭树叶分解率的比较。因此我们不能把每个等深线的树叶包放在一个单一的地点。这将不会给我们任何关于沿着每个等深线分解率从一个点到另一个的变化的信息。我们需要在能妥当地运用推理统计学来测试前,知道我们的零假设(两个等深线的分解率相同)。所以在每个等深线必须安放合适的叶包。有许多方式可以做到这一点。每个等深线的位置最好应该是随机挑选的,但树叶包可以单独放置(八个地点),一组两个 (四个位置),或一组四个(两个位置)。此外,我们可能会决定这仅仅足以处理沿着湖的一侧的等深线,等等。确保野外样品或测量是分散在空间(或时间)里的。用适合特定假设被测试的方法,是测定性试验设计中最关键的方面。在测定性试验里的假重复例3。由于懒惰,我们把所有八个包放在每个等深线的一个位置。它仍将是适用于结果数据的有意义的测试。然而,关键是在这个试验中,如果一个“碰巧”是在l m等深线处的一个点,第二个“碰巧”是在十米等深线的一个点,有一个显著差异,在这两个位置(点)之间差异的构成证据。这样一个显著的差异不能被合理地解释为是两个等深线的间区别的证明据,即,作为“处理效果的证据”。“我们都知道,如果两套八个袋子被放置在同一个等深线的两个点,这种观察到的重要区别是不会大于我们的发现的。如果我们坚持将有明显区别的例子3作为“处理效应果”或等深线间的真正区别的来解释,然后我们说假重复术语。在方差术语分析中,假重复被认为是假设有误差项的处理效果的测试。在例3中,基于八袋在一个位置的误差项是不恰当的。一般在测定性试验中,假重复往往是由于实际的采样或测量的空间比隐含在被测试的假说中的推理空间小或者更受限制在控制试验中,假重复通常是因为使用推论统计来检测处理效果的试验数据有问题,这些数据要么处理并不重复(尽管样本可能)或重复在统计上不独立。假重复因此指的不是在试验设计(或抽样)中的一个问题,而是试验设计(或抽样)统计分析的一个特殊结合,该统计分析不适合测试假说的重要性。假重复现象是在测定性试验和控制试验两种文献中广泛存在的。它可以以许多形式出现。本文是讲述关于假重复在控制试验和与控制试验相关事项的。控制试验更多相关术语一个测定性试验可能由一个单一的处理(示例1)组成,而一个控制试验总是涉及到两个或两个以上的处理,它的目标是进行一个或更多的比较。起决定性作用的特征是,不同控制试验的试验单位接受不同的处理, 试验单位的处理是随机的或者是可以随机的。需要注意的是,在示例2中,试验单位不是叶袋子,更准确地说明只是测量仪器,而不是八个放置袋子的物理位置。以下许多统计学家anscombe(1948)使用术语来比较试验所谓的控制试验和所谓的测定性试验。我觉得anscombe的术语有误导性的。它掩盖了比较也是许多测定性试验的目标(如例2)的事实。cox (1958:92-93) 画了一个处理因素和分类因素的区别图,乍一看似乎测定性试验和控制性试验间有着相似的区别。但是他们之间没有。对cox来说,“物种”将永远是一个分类的因素,因为“物种”是一个本质性质的单位,不是指定的试验者。然而“物种”,像许多其他类型的分类因素一样,显然可以是测量试验或控制试验的可变因素。测试阻燃木材的两种类型(cox的例子6.3,简化)的效果或比较橡木和槭树叶(例5)的分解率代表了测定性试验,物种是处理变量,随机赋值试验单位(=物理位置)的处理是可能的。然而,为了测量并比较在森林中的橡树和枫树的自然的光合速率,将会进行一个测定性试验。随机分配两个树种的地点是不可能的。cox(1958)的处理因素和分类因素的区别是有效的,它比测定性试验的分类受到较少的批评。但它不符合试验设计和统计过程中的二分法。控制试验的关键特性控制试验是多个类别的潜在问题的关键。在表1我已经列出这些“误差的来源”;在某种程度上试验是成功的,因为这些因素无法显示其结果的不确定或结果的模棱两可。试验设计的任务是减少或消除这些来源的误差。为了减少误差,每一个潜在来源都列出了一个或多个试验设计的特性。这些特点大多数都是必须有的。改良后一个试验的执行可能会进一步减少这些误差的来源。然而,这样的细化不能替代试验设计的关键特性:控制(对照)、重复、随机,和试验的布局。人们总是可以假设误差的特定来源是无效的,也可以简化试验设计和相应的程序。这节省了很多工作。然而,可控试验的本质在取决于其结论的有效性而不是取决于与逼真的假设的一致性。表1、试验误差的来源及其消除方法误差的来源减少或消除误差的试验设计的特点1、时间变化控制处理2、程序影响控制处理3、试验偏差不同处理之间试验单元的随机分配;其它程序操作的随机化;盲程序4、试验者造成的可变性处理的重复5、试验单元之间的内在或内禀变异重复处理;分散处理;同步观察6、非偶然事件的干扰重复处理;分散处理7、偶然事件的干扰时刻保持警惕,除去干扰,人的奉献表1列出了误差来源,试验设计必须遵从。“致命”和“非致命干扰”的意义下文将做简短的阐明。控制(对照)“控制”是另一个不幸的术语,在上下文的试验设计中有好几个意义。在表1中,是控制其最传统的意义,即,任何相对于一个或多个其他处理的处理将会被比较。它可能是一个“未经处理空白”处理(一个试验变量没有控制),一个“程序”处理(当老鼠注射生理盐水被用来作为老鼠注射生理盐水加药物的控制),或者只是一个不同的处理。至少在生物系统的试验中,控制是需要的, 因为生物系统是随时间变化的。如果我们可以绝对肯定, 随着时间的推移,一个给定的系统其的属性不变,那么即使缺少试验处理,一个单独的控制也将是不必要的。在一个试验单位进行处理前, 可以作为试验单位处理后的控制。在许多类型的试验中,控制有第二个功能:允许试验过程中不同方面的效果的分离。因此,在老鼠的例子中,“只有盐溶液“处理似乎是一种必须的控制。额外的控制,如“只有针插入”和“不处理”在某些情况下可能是有用的。一个更广泛和更有用的(虽然不那么传统的)“控制”的定义将包括所有必须的设计特性,列在表1中。“控制”(时间变化和过程影响狭义的控制)。随机化控制(减少或消除潜在偏见)试验者偏向试验单位处理的分配以及在执行其他程序。随机因素野外控制,即,试验材料的野外可变性是固有的或试验员介绍的引入的或是由于干扰导致的。试验单位的空间变化属性的布置控制,这是否代表一个初始条件或是非致命干扰导致的结果?在这种似乎完全准确的状态的背景下,例如,一个试验如果缺乏重复,那也是一个不受控制的试验,它就是不可控的随机因素。把重复和控制作为试验设计的单方面的习俗是根深蒂固的,然而,“控制”只有在这种狭隘、传统的意义上才会被使用。控制在试验环境下的第三个意思是试验被实施的条件下的规则。它可能指的是试验单位的同质性,对特定处理程序的精度,或在通常规定的物理环境中进行的试验。因此一些调查人员想说在2 51 摄氏度的试验室里用小白鼠比野生老鼠“更好控制”。在这个领域中温度波动在15摄氏度和30摄氏度之间。这是不幸的用法,因为一个试验中真正的控制的妥善性(即,控制处理)相对物理条件的限制或管制来说是独立的。试验的有效性既不是这种监管的影响,也不是统计分析被修改的结果;如果没有设计或统计错误,我们有可能拒绝认为零假设就是指定的值p。这些事实是许多试验室科学家知之甚少的。控制的第三个含义无疑源于对古老但模棱两可的格言的误解,“除了有兴趣的,其他所有变量保持恒定。这指的不是没有一般价值的世间万物恒久不变,这只是试验想得到的恒等式以及除了处理变量和它的各方面影响的控制系统。重复,、随机和独立在试验中重复和随机化都有两个功能:提高估计的价值并且允许测试。只是在估计方面的作用是隐含在表1的。重复可以减少“噪声”的影响或随机偏差的错误,从而提高估计的精度,如,处理的平均值或两种处理方法的区别。部分试验者随机化消除可能的偏见,增加了这样估计的精度。关于试验,“重复的主要目的(没有现实的替代方法),是为了提供一个估计的误差(即,可变性)。通过这些,比较的意义将被判断(和)随机化的目的是保证测试的有效性的意义,这个测试是基于野外的估计误差”(fisher197:1:63 - 64)。在一个试验中,试验单位处理的随机分配用什么方式授予“有效性”?一个清晰、简洁的回答是不经常发现的。它保证“不仅仅试验是无偏的”(fisher197:43),尽管这是非常重要的。它保证平均“误差”都是独立分布的,“相似处理的成对的实验组和不同处理的成对的实验组相比不能相距更近或更远,或者彼此在其他相关方面不能存在差异,”除非把在这个范围作为存在一个处理效应。 (fisher1926506)。(在她讲话的解释中,box(1978:146)在这一点上插入了非常重要的限定符“平均”)。在操作术语上,误差独立性的缺失阻止我们知道a,第一类误差的可能性。通过一个显著性检验的例行方法,我们可以指定(例如,a = 0.05)和查找适当的测试标准(如,t或f)的相应的临界值。然而,如果错误是不独立的,那么真正的可能是高于或低于0.05,但在一些情况下它是未知的。因此对统计分析的解释就变得相当主观。偶然事件和非偶然事件干扰。如果你的试验在干扰严重的区域,不管你的试验设计是否完美你都会惹上麻烦。如果一个干扰选择对每个在处理a的试验单位“做些什么”,但没有对处理b的试验单位“做些什么”,如果他/她/它的访问也未被发现,结果将是错误的。人们也可以界定某些实验设计结果和致命干扰的执行错误。例如,如果在有篱笆和没有篱笆的地段研究狐狸捕食的影响,鹰可能被吸引到篱笆墙并使用它们作为栖息地,寻找猎物。之后,狐狸可能会对鹰在篱笆地段产生的处理效果产生防御。是否将这样的非偶然事件视为干扰或者简单的归结为试验者缺乏远见和实验步骤控制不足是一个主观的问题。这取决于我们是否相信一个合理周到的试验者应该已经能够预见到非致命干扰和并采取措施阻止它。偶然事件干扰意味着在一个试验进展中偶然事件的影响冲击。这种干扰发生在所有试验工作中,在数据中增加了“噪声”。大多数时候,任何单一的随机事件的影响是不可估量的。然而,关于定义、性质、规模和频率等这样的偶然事件是不可预测的,也不是他们的影响。如果一个事件影响着所有的试验单位的所有处理,这是没有问题的在野外试验中每一个天气的变化将是这样一个“偶然”事件。可能更麻烦的是只影响一个或几个试验单位的随机事件。一个试验动物可能死亡,污染事件可能发生或供热系统可能发生故障。一些偶然事件可以被检测到,但大多数是不会的。试验者通常努力减少偶然事件的发生,因为它们减少了检测真正的处理效果的试验力量。然而,同样重要的是要尽量减少当没有偶然事件的时候产生处理影响的可能性。实验处理的重复和布置为避免随机事件产生的伪处理效应提供了最好的保障。处理的布局从本质上讲,在一个测定性试验(例2)中,“处理”通常在空间和/或时间上彼此隔离。相比之下,在控制试验中,处理总是在空间和时间上互相穿插的。这种布局/隔离标准是这两种类型的试验的主要操作区分。在大多数类型的控制试验中,当试验单位被随机分配时,处理结果的合适布局就可能会发生出现。然而,在某些方面,布局是更关键的概念或特征;随机化是实现合适布局置的一个中简单方式,消除了可能的误差。同样,对于适当的试验设计的初步评估,布局是一个比随机化更实际的准则。后者仅指过程,但前者表明试验的物理布局应该看起来像什么,试验单位在空间分布上大致如何。例4. 我们继续检测在1米的等深线中橡树叶(栎属)是否比槭树叶(槭属)分解的更快。尽管这次的试验操作与我们之前的测量试验(例2,例3)很相似,但它仍是一个人为控制试验。现在我们选择了不同物种,并在时间或空间上从两点对多于一种的系统属性进行对比。我们将8包槭树叶随机放入0.5平方米的a试验区中,再将8包橡树叶随机放入另一个相同的相邻b试验区之中。因为这次处理是分隔但不散置的,所以比较无趣。唯一被证实的假设就是:在a试验区的槭树叶与在b试验区的橡树叶相比以不同的速率分解。试验中所谓的“相同”的试验区基本上是不存在的,而两个试验区只要可能存在一丝微小的不同,分解速率就会因此受到影响。而且,试验也没有考虑到外力入侵,即,外界产生的不可逆的影响和偶然事件的发生。而这些也会增加试验区之间的差异。所以,这个试验并没有完全地在掌控之中。例5. 我们将这两种树叶随机放入一个试验区里,并置于1米的等深线之中。这个试验能让我们有效的检测这两种树叶是否以相同的速率分解。如果我们的目的只是比较二者的分解速率,那么这样已经足够了。但如果我们想要阐释在1米的等深线中二者的分解对比是怎样的,那我们就应当将两种树叶, 随机散置在两个或两个以上的选定点上,置于1米等深线上,如果我们想要把试验普及到某种湖水中,那么毫无疑问,这两种树叶必须随机分配,或者使用这些湖水的随机样本进行随机分配。空间散置与空间分隔模式图1图解了在两种处理的试验中3种可行的散置处理方法和4种(不是5种,根据散置标准,b-4与a-1相同)不可行的散置处理方法。试验单位可以在户外或者潮间带,可以是试验室工作台上的水槽,可以是一小片池塘,也可以是一排试验区。有没有真实的界限都可以。每个试验单位都使用相同的处理方法(引入鱼类,使用杀虫剂,移除海星),并各自独立。图表1展示了一些关于每个试验设计的评论。图1,可以接受的重复的布局(a)和应该避免的布局(b)完全随机设计(a-1) 简单随机设计是对试验单位进行分配处理的最直接最基本的方法。然而它在生态学野外试验中却并不常用,至少在试验单位很大(池塘,或1公顷的试验区等)的时候不常用。在这种情况下,每种处理只有少数可利用的试验单位,而野外巨大的试验单位也是不可能的。这个时候,完全随机分配就能提供产生分隔处理而不是空间散置处理的可能性。比如,当存在3倍重复的时候,随机数字表提供的简单分隔(图表1,b-1)的几率约等于百分之三,当存在4倍重复的时候则为百分之十。这里我强烈反对以下观点:(cox 1958: 71; cochran 和cox 1957:96)完全随机设计在“小试验”中最为适用。很明显我们不能总指望它能给我们像a-1(图表1)这么“好”的结果。图2:三个试验不是很恰当的处理的布局(i)在森林地被物区系上雄性和雌性的捕食率(cox 198 1, 1982);(ii)在不受保护的田地里两种啮齿类动物的去除、一种去除(s,r),都不去除(sr)或者都去除(c)对散布的影响;(iii)去除啃食者(r)和没去除(c)对海藻的影响(slocum 1980);阴影表示未使用部分的研究领域。我们很少能在生态学中发现严格随机导致散置处理不当的例子。试验生态学家大致分为两派:一派是根本没有意识到到散置的需要;一派是意识到了散置的重要性并根据需要采取步骤且达得到了一定成果。图表2展示了3种现存的试验布局,但其中的散置程度都差强人意。图表2-i是我所发现的唯一清晰具体,随机程序正确运用的例子。即使如此,试验布局也只是完全随机区组设计中四个区组之一而已。在另外两个试验(图表2-ii,iii)中,试验者并没有指出给试验处理分配试验区时所运用的程序或标准。不过,这对于这种源于随机分配的分隔布局也不算罕有见。在以上三种案例里,事先存在的梯度和外力的干扰可能会产生伪处理效果,而且此种可能性很大。随机区组设计(a-2)此种设计在生态学野外试验中很常见。在这个例子中,四个区组各自明确,每个区组由两个试验区组成,每种处理都被随机分配到每个区组的每个试验区。对于“有限随机化”的其他模式,随机区组设计则会降低处理偶然分隔中发生意外的可能性,也有助于防止先前存在的梯度和外力干扰模糊处理效果或产生伪效果。关于预防外力入侵,分区块或是其他能保证散置的程序也是很可取的。根据试验单位的属性,事先操纵的梯度是已知或未知存在的,而随机区组设计不仅仅是一项仅适用于此种情况的技术。当结果用非参数数据分析时,此设计会有一个(弊端)。在显著性(p0.5)差异可以通过wilcoxon的符号秩检测(a-2的正确检测方法)的方法证明之前,取六倍重复的最小值是有必要的;反之,在差异可以用mann-whitney的u检验(a-1的正确检测方法)证明之前,四倍重复即可。至少从实践的角度看,将u检验运用于设计a-2的试验数据并没有什么问题,这种做法不会增加产生伪处理效果的可能性(即增加i型错误的可能性),而且它也是评估这种混合法有效性的最好的单准则。系统设计(a-3)系统设计可以达到有规律的散置效果,但是它也有风险:干扰的间隔时间可能与试验区周期变化的周期一致。在大多数情况下,存在这种风险的几率很小。有这么一个例子,在这个例子中系统设计似乎比随机设计更可取:有人做了一个关于影响火烈鸟对湖泊微型底栖生物的捕食的试验(hurlbert & chang,1983)。建立了四块围场,以线性排列,每块围场的间隔相同,这些围场四周还有十块系统散置控制区。我们的解释是火烈鸟可能是因为围场的栅栏而畏缩不前。在这个案例中围场距离的变化导致了火烈鸟活动的控制区的变化。在我们的统计分析里,我们就完全随机设计运用了一个程序(mann-whitney的u检验)。不管是系统设计还是随机区组设计,我们都可以将分配过程确立于设计的内部属性而不是试验单位的定位。假设我们的研究是关于土壤螨类,那我们就能事先安排好土壤中螨类密度,再因此排列试验区。我们可以给奇数排列的试验区分配一种处理方法,给偶数排列的试验区分配另一种。在这个过程中,我们事先控制螨类的密度,再经过两次或两次以上的取样期处理,螨类的密度都是平均的。把分配过程确立在设计的内部属性而不是试验单位的定位上存在着一个风险:分配可能会以空间分隔处理结束(比如b-1),而完全随机设计也有着同样的风险。风险随着每种处理方法中样品数目的增加而降低。混合法既考虑到了定位也考虑到人为内部属性,而且在本质上也是根据个人主观态度将处理方法分配到试验单位中去,目的是达到适当的空间散置,还有处理方法与样品单位(在处理单位中)之间的人为可变性的最小值。我们也将它运用到杀虫剂(hurlbert et al, 1972)和鱼对浮游生物数量(hurlbert & mulla, 1981)的影响的研究中去。在后者的试验中,最初有三种处理方法(每个池塘分别有0条,50条,450鱼)和有限不等的重复(每个处理方法分别有5个,4个和3个池塘)各池塘存在浮游生物的差异性。这些不等的重复反映出我们的观点:人为操控下的池塘里浮游生物的总量的变化与鱼的密度成反比。在这种情况下,很难有什么方法能比分配散置更适用了。简单集群分隔(b-1,2)这种类型的方法很少在生态学野外试验中运用。vossbrinck(1979),rausher(1980)和warwick等(1982)给出了三个例子。大概是人们意识到自然界独立重复的必要性,也因此意识到散置处理的必要性。处理分隔在室内试验更为常用。任何种类的分隔处理都有一定的风险分隔处理很容易导致伪处理结果,比如i型错误,伪处理结果可能是由以下其中之一或二者共同导致的。第一,在进行试验之前,两种处理的差异可能已经存在。理论上这些差异是可以被检测出的,但这也需要丰富的相关知识和精确的研究工作。第二,在进行不受结果支配的试验时,定位差异会由于外力干扰而被进一步拉大。例6 为了检测杀虫剂对浮游生物数量的影响,我们准备了8个装有浮游生物的水槽,并放置在试验室的工作台上。我们将杀虫剂注入左边的四个水槽,也密切关注另外4个水槽。建立像这几种及其相似的初始条件相对简单,只需要确保所有的水槽都有相同的物种和光照条件等。在这样的试验里,试验系统建立后的突发事件最有可能成为产生伪处理结果的“温床。比如说,工作台一头的灯光暗了一下,然后就会在整个工作台上产生光照梯度,而我们并无法察觉。那么一个伪处理结果就因此产生了。或者,灯泡完全坏了,而我们在48小时之后才发现,在这种情况下,如果我们想亡羊补牢,那么我们就会要换灯泡,制定一个更好的试验设计,取消此次试验然后一切从头开始。否则,出现伪处理结果的可能性将会很大。例7 设想:有人将一瓶开封的甲醛搁置在工作台的一边,过了一下午,试验台周围到处都是甲醛气体,而我们对此也一无所知。这时我们会发现杀虫剂可以刺激浮游生物的光合作用。但事实上这只是因为那瓶开封的甲醛而已!不仅在这个试验中,在很多室内试验中,处理配置对于确保初始条件并没有那么重要。因为这两种处置很相似。但是,当处理配置作为对外力干扰和对突发事件的控制手段时,是极其关键的。如果杀虫剂和水槽能够合理的散置,那么即使灯泡和甲醛也对两种处理的差异不会产生影响,但是却可能导致在每种处理方法上中水槽的差异。不过这样也排除了产生伪处理结果的可能性,但同样时也会使真正的试验结果扑朔迷离。例8 我们重复了浮游生物和杀虫剂的试验。这一次,我们使用了简单分隔处理(b-1),并在试验池塘里进行了试验。因为是野外试验,所以分隔处置会造成双重风险。试验既没有控制事先存在的定位差异(比如土壤类型存在梯度),也没有确保定位差异在试验中不会被拉大(比如,如果试验池塘组的一边有树林,那么靠近树林的那个池塘可能已经是两栖动物活动栖息地了,刮风下雨时,泥沙更容易流入逆风的池塘而不是顺风的池塘。)孤立分隔(b3) 孤立分隔是室内试验常见的设计方法,但它却没有受到实地生态学家的青睐。它会以极端的方式引发简单分隔所有的全部风险,因而伪处理结果也很容易产生。在关于气温的影响的研究中,人们通常会使用恒温室、生长箱或保温箱,但这些设备价格昂贵、数量有限,而且经常是许多人合用。尽管两个这样的生长箱看似一模一样(除非设置了不同的温度),但事实上,在某些方面(光照,有机挥发物等)它们还是有差别的,尽管人们也在尽力避免这些差异。在鱼类的生理机能和成长过程的研究中,试验者通常使用一个水槽,水槽里混合了各种鱼。每一种处理方法(温度,食物等级等)都是如此。如果鱼的种类是我们所关注的试验单位,那么这种试验就会被看做是对孤立分隔处理的示例(设计b-3)。如果水槽是直接受操控的试验单位,那么这种试验就会被看作是缺少重复处理的试验(设计b-5)。在例7中,孤立分隔方法而导致的伪处理结果被认为是甲醛溢出造成。伪处理结果产生的环境是不太可能存在的。因为在这个环境中,甲醛有显著的密度梯度,能免受房间中正常的空气循环的影响,并且能长期坚持在一排水槽边萦绕不散。在我们的新例子中,不管是在恒温的房间里或还是在水槽里,即使是溢出的一点点甲醛都会导致外来变量处理方法的布局的不同。而且处理方法受过污染之后,其样品也会比例子7中的样品更为显露。随着处理中差异的减小,这也会进一步增加产生伪处理效果的可能性。随机但是组内相互依存设计(b-4)到目前为止,我们主要集中研究空间散置,并把它作为确保统计独立的方法,但这也不是金科玉律。设计(b-4)(图表1)反映了一种试验安排。在这个设计中,8个水槽平均分为两批,每一批都共用一个加热器,一个通风器,一个过滤器,和一个流动器。尽管这个设计有充足散置设备,但是它却没有孤立分隔使用。而且这种设计也容易产生伪处理结果。对于涉及这种系统的试验,每个重复都应该有各自的独立维护系统。使用这种方法,电机故障、污染事件或是其他的外力入侵都只会影响到单个的试验单位,不会产生伪处理结果。同样令人满意的是,所有的处理的所有试验单位都会与同样的保持系统相联系。随机和布局综上所述,我们可以显而易见地看出人们在使用随机化程序和散置处理时存在着分歧。随机化处理有时会产生这样的布局:处理方法在空间上分隔,特别是在野外调查样方很小并且运用了完全随机设计的方法获取样方的时候。运用严格随机设计(随机区组,拉丁方)会减小极端分隔布局的可能性,但这不表示不会出现一定程度的分隔,这种分隔让那些谨慎的试验者们接受不了(图表3)。图3。隔离散置四个处理的例子,每个重复四次,使用严格的随机化程序,可以导致:(i)随机区组设计,(ii)拉丁方设计。cox(1958: 85 - 90)讨论了三种解决问题的方法。 其中最简单最有用的是第二个:当该布局出现时,如果布局高度分隔,再进行随机分配,直到出现令人可接受的散置。理论来讲,接受度的标准是提前规定好的,由这个程序引出设计。通常,这种设计比那些通过严格随机程序得来的设计要更加散置(系统或均衡)。但是这个程序也会阻碍我们对出现第i类错误可能性做出的精确计算。因此,这种解决方法对fisher来说就是一个恶梦。对于他来说,对的正确阐述是一种“原罪”而不是某种试验设计。他执拗地反对违背严格随机程序,更加反对系统设计(barbacki & fisher, 1936,fisher, 1971: 64-65,76-78)。他的这种反对态度也传递给了他的追随者们,因此也就奠定了有关此话题的上文的基调。这种态度并不合理,散置系统和其他的优点比他给出的关于随机的优点要多的多。历史视角 如果想要更好地了解fisher的观点与成果,就要了解相关历史,因为历史与数学一样重要。随机概念是fisher“在科学方法上的一大贡献”(kempthome 1979:121),他自己也这么认为。尽管他的导师和朋友w. s.gossett(“学生”),也是统计学上的一大天才,却从来都不能完全接受fisher关于完全随机的言论。更糟糕的是fisher 还认为系统设计更加高级。关于这个问题,他们13年来时不时地通信,在信中争论不休,他们还在皇家统计学会上公开争论这个问题(gossett 1936),“gossett坚持自己的立场,反对fisher,最后留下震怒的fisher走了。”(box 1978260)从他fisher后来的信中可以看出,fisher他的火气渐渐消了。尽管他觉得自己是对的,但他也感觉到了拘谨,不仅仅是因为gossett,也是因为那些农学试验家们似乎也更倾向于使用系统设计。gossett关于系统设计的最清晰的说明是在他去世的前一年写的,并在他死后出版。他的基本观点(363页-367页)看起来无懈可击。yates(1939:7)详尽地回复了,并用中肯的语气承认了gossett的一些观点,但是总体上他还是坚持fisher的立场。fisher(1939:7)除了评论gossett “没有说明随机化的必要性,他只是显示了对那些工作在这个岗位上的同事的忠诚”就再无回应。遗憾的是gossett没能活到解决这个争论的那天,他死后也没有人接他的班。如果他和fisher能就基本原理进行讨论,(他们大多数的争论是关于一个叫做“半耕带法”的农艺技术)那他们就会发现更多的共同点。fisher这一派对于反对系统均衡设计的观点占了上风。fisher不仅比gossett长寿了将近25年,而且出版的东西(300多篇文章,7本书。gossett只有22篇文章)也比他多。fisher曾经做过老师,咨询师,农学家和其他科学家的顾问,产生了极大地影响。而gossett只做过数据师,还有和guiness啤酒厂的酿酒师,与fisher相比,他默默无闻的多。fisher毫无疑问地意识到配置对于缩小差异、减少伪处理结果的重要性(fisher 1926506,197 1:43)。他在试验设计领域的作品几乎都是关于应用有限随机设计技术的,这不仅保证了一定程度的散置,也增加了处理效果的可察觉性。fisher与gossett主要的不同是他认为散置只是次要问题,不应该以的准确解释为代价而一味地追求散置。为了更深地挖掘这个争论,我们还必须追问:的准确值究竟有多么重要呢?如果我们知道,那我们得到了什么呢?如果我们放弃,又牺牲了什么呢?预布局和指定布局 两个的区别要清晰明确。我将这两个分别称为预布局(pl)和指定布局(ls)。表2是二者的对比。gossett很清晰地指出了二者的区别,大多数统计学家也能够明白。应用确切可知的或特指的?受到程序的支配受到试验单位间的变异pl一般性的过程, 所有布局都可能是是否ls 特定的布局 否否是pl就是传统的,是fisher和大多数统计学家最常接触的,也是试验家们所详细阐述的。它可以是试验中所有可能布局的几率,可以是类型1中错误的概率,也可以是出现伪处理结果的可能性。用符号形式可以表示为:一旦选择了一个详尽的试验布局,处理方法也配置到试验单位中去,那么就可以给ls下如下定义:ls是试验中运用布局后犯类型1错误的可能性。因为既定的试验只做一次,并运用了单个布局,所以对于试验者来说,ls比pl要更有趣。通常ls会大于或者小于pl。比如说,如果影响变量的空间梯度存在于试验单位之中,那么当处理方法得到很好的配置时,ls通常比pl小,当处理方法在一定程度上分隔时,ls通常比pl大。问题是ls是不能为我们所详知的,无论是否通过随机的方法获取某种特别的布局。所以,试验者们必须回到pl上进行分析,因为pl是唯一能够具体分析可接受风险的方法。虽然ls可能与实际操作的试验并无多少关系,但是这也并不意味着我们可以使pl=0.05,所以我们就必须坚持所有能保证准确性的程序(尤其是严格随机)。更为准确的说,如果有人选了gossett建立的系统或者均衡设计,或者选择了cox的第二种解决方法,亦或是通过一些特别的方法进行散置,那么这个试验就是比较成功的。此时ls小于0.05,也就是说,试验虽然考虑了避免错误,但它同时也还是保守的。cox简洁地总结了这种方法:因为一切都在掌控中,我们接受了以前我们认为很糟的方法,接受它就相当于强迫数学理论一致。但我们的目标是找到一个能让试验顺利进行的设计,所以长久之计就是要接受它,但是精准的完成长期以来的数学条件不是我们的目标。究竟哪一个更有价值呢?是已知的选定量可能是ls的上界?还是已知等于pl,但未知ls的上界值?每个试验者都要自己做决定。处理结果的有偏估计 关于系统设计的另一个经典异议是:由于系统安排模式可能会与野外的模式重叠,因此处理方法中将会引入误差,而且由于试验中采用相同的系统安排,这种误差会存在于所有试验中(yates 1939:442)。而这个异议也会存在于这样的设计中:想得到更好地散置,把规律性引入了试验布局。尽管这个异议在试验设计和统计书本里经常出现,但不代表它就是有根据的。在小型试验中,随机化会经常产生系统或类似系统的布局。那么古板的fisher派会因为可能出现的重叠而反对如此散置“合理”的布局吗?有人希望不会。他们很可能因此喜笑颜开,因为他们在两个领域上都取得了巨大的成就:一是他们能详尽地解释出pl的定义,二是他们可以因此得出ls小于pl。还有,当试验区存在一些可能的波动因素时,其周期性和规律性就会消失。此时,试验结果的最大误差就会因为不是系统设计而出现。不过,fisher宁愿承认自己在这两个领域中一无是处,也不愿同意以上的观点。1952年他被问及一个问题:如果随机化意外产生了一个系统拉丁方,你会怎么做?“ronald先生说他会重新设计,人们也应该研究出一个明确排除规则方的理论。”(savage,等1962%)。在1956年的一次谈话中,youden(1972)讲述了一个“强迫随机化”的程序,在此程序中,通过反对高度分隔和高度配置的方式,pl的准确含义又被重申了一遍。在他的四个处理方法中(每种方法有两个野外品),youden反对以下布局:aabbccdd,aabbcdcd,abcdabcd,和abcdbadc。也许,fisher反而能接受这些布局。不过但后两个的布局散置合理,也不太可能产生伪处理结果,倒比许多youden能接受的布局要合理的多(如abaccddb)。尽管有人想要通过修改youden的接受限度来尽量减少他的错误,但是我认为,只要是反对推理设计的,那么方法必然不会奏效。因为之前已经有一些“过度”的散置和规律性被他察觉了。对于那些重复多次的试验和试验组群来说,周而复始地使用某一系统设计是不合理的,因为通过随机而获得的某种设计是不可取的,更何况多次地使用呢?尽管我们必须承认某种特别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届新疆伊犁州英语九上期末质量检测试题含解析
- 2026届内蒙古伊金霍洛旗英语九上期末质量跟踪监视试题含解析
- 2025年风力发电运维值班员(技师)职业技能鉴定考试题库含答案
- 2025年教师资格考试高中面试美术试题及解答参考
- 广东省广州市华南师范大附属中学2026届九年级英语第一学期期末预测试题含解析
- 山东菏泽郓城2026届九年级英语第一学期期末复习检测模拟试题含解析
- 湖北省恩施土家族苗族自治州2026届九年级化学第一学期期中教学质量检测试题含解析
- 2025年设备购销合同格式范文5篇
- 离婚子女抚养协议修订版:费用调整及监护权调整文本
- 2026届山东省临沂市沂水县英语九年级第一学期期末达标检测模拟试题含解析
- 2025至2030中国电动汽车用电动机行业项目调研及市场前景预测评估报告
- 2025年福州房地产市场分析报告
- 诗词格律培训课件
- 《大学生心理健康教育》课程教案
- 音乐感知:从听觉到绘画
- 急诊icu管理制度
- 无人机操控技术 教案 3.2无人机模拟器基本设置
- T/CSBME 078-2024掌上超声仪临床应用规范
- T/CEMIA 012-2018光纤激光器用掺镱光纤
- T/BECA 0005-2023建筑垃圾再生回填材料
- 老年医学人才培训汇报
评论
0/150
提交评论