




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面向量常见题型突破考向一平面向量的线性运算【例1】如图,D,E,F分别是ABC的边AB,BC,CA的中点,则()A. 0 B.0 B. C.0 D.0审题视点利用平面向量的线性运算并结合图形可求解:0,2220即0.A方法总结: 三角形法则和平行四边形法则是向量线性运算的主要方法,共起点的向量,和用平行四边形法则,差用三角形法则变式练习:1.在ABC中,c,b,若点D满足2,则() A.bc B.cb C.bc D.bc解:2,2(),32bc.答案A2.在ABC中,已知D是AB边上一点,若则等于( ) A. B. C. D. 解: . 3.在平行四边形ABCD中,E和F分别是边CD和BC的中点,或其中R,则 . 解析:设b, a, 则b-a, ba, =b-a. 代入条件得 .4.设P是ABC所在平面内的一点, +=2,则( ) A. +=0 B. +=0 C. +=0 D. +=0 解析:因为+=2,所以点P为线段AC的中点,所以应该选B. 6.已知O是ABC所在平面内一点,D为BC边中点,且0,那么( ) A. B. C. D. 解析:且 0. 0, 即. 7.已知AD是ABC的中线, R),那么 . 解:=+= =-. 考向二:平面向量基本定理的应用【例1】(2012南京质检)如图所示,在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则_. 解析由B,H,C三点共线,可令x(1x),又M是AH的中点,所以x(1x),又.所以x(1x).答案方法总结: 应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用当基底确定后,任一向量的表示都是唯一的变式练习:1. 如图,两块斜边长相等的直角三角板拼在一起若xy,则x_,y_.解析以AB所在直线为x轴,以A为原点建立平面直角坐标系如图,令AB2,则(2,0),(0,2),过D作DFAB交AB的延长线于F,由已知得DFBF,则(2, )xy,(2,)(2x,2y)即有解得另解:,所以x1,y.考向三求两平面向量的数量积例:(2011合肥模拟)在ABC中,M是BC的中点,|1,2,则()_.解:如图,因M是BC的中点,故2,又2,|1,所以()24|2|2,故填.方法总结:当向量表示平面图形中的一些有向线段时,要根据向量加减法运算的几何法则进行转化,把题目中未知的向量用已知的向量表示出来,在这个过程中要充分利用共线向量定理和平面向量基本定理、以及解三角形等知识变式练习:1. 如图,在菱形ABCD中,若AC4,则_.解析,故().而,.所以CA28.2.如图,在ABC中 ,|=1,则等于( ) A. B. C. D. 解析: =|cos|cos|sin =|sinB=| |. 例:(2011湖南)在边长为1的正三角形ABC中,设2,3,则_.解:由题意画出图形如图所示,取一组基底,结合图形可得(),()22cos 60.答案变式练习:1. (2011天津)已知直角梯形ABCD中,ADBC,ADC90,AD2,BC1,P是腰DC上的动点,则|3|的最小值为_尝试解析以D为原点,分别以DA、DC所在直线为x、y轴建立如图所示的平面直角坐标系,设DCa,DPx.D(0,0),A(2,0),C(0,a),B(1,a),P(0,x),(2,x),(1,ax),3(5,3a4x),|3|225(3a4x)225,|3|的最小值为5.答案5考向四 平面向量在平面几何中的应用例:平面上O,A,B三点不共线,设a,b,则OAB的面积等于()A. B. C. D.解析cosBOA,则sinBOA ,SOAB|a|b| .答案C方法总结:平面向量的数量积是解决平面几何中相关问题的有力工具:利用|a|可以求线段的长度,利用cos (为a与b的夹角)可以求角,利用ab0可以证明垂直,利用ab(b0)可以判定平行变式练习:1.设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线,ac,|a|c|,则|bc|的值一定等于()A以a,b为邻边的平行四边形的面积 B以b,c为邻边的平行四边形的面积C以a,b为两边的三角形的面积 D以b,c为两边的三角形的面积解析|bc|b|c|cos |,如图,ac,|b|cos |就是以a,b为邻边的平行四边形的高h,而|a|c|,|bc|a|(|b|cos |),|bc|表示以a,b为邻边的平行四边形的面积A2.ABC中,已知向量与满足0且,则ABC为()A等边三角形B直角三角形C等腰非等边三角形D三边均不相等的三角形解析由0知ABC为等腰三角形,ABAC.由知,60,所以ABC为等边三角形,故选A.3.平面上有四个互异点A、B、C、D,若(2)()0,则ABC的形状是()A直角三角形 B等腰直角三角形C等腰三角形 D无法确定解析由(2)()0,得()()0,所以()()0.所以|2|20,|,故ABC是等腰三角形4.已知和点M满足,若存在实数使得成立,则=( ) A2 B3 C4 D5解:由,知,所以+,即,解得;5. 已知为平面上四点,且,则( )A点M在线段AB上 B点B在线段AM上 C点A在线段BM上 DO、A、M、B四点共线解:根据题意知,则,即.由判断出点在线段AB的延长线上,即点B在线段AM上;6.是平面上一定点,是平面上不共线的三个点,动点满足则的轨迹一定通过的( ) A外心 B内心 C重心 D垂心解:过作于点,取中点,由题意知=,=,即,又因=,得所以的轨迹一定通过的重心.7. 如图,半圆的直径,为圆心,是圆弧上不同于的任意一点,若为半径上的动点,则的最小值是 ;ACBPO解:,等号在,即为的中点时成立8.2012江苏卷 如图在矩形ABCD中,AB,BC2,点E为BC的中点,点F在边CD上,若,则的值是_解析 本题考查几何图形中的向量的数量积的求解,解题突破口为合理建立平面直角坐标系,确定点F的位置以点A为坐标原点,AB所在直线为x轴建立平面直角坐标系,则(,0)设(x,2),则由条件得x,得x1,从而F(1,2),(,1),(1,2),于是.9. 2012湖南卷 如图在平行四边形ABCD中,APBD,垂足为P,且AP3,则_.解析 本题考查平面向量的数量积和向量的表示,意在考查考生对数量积的掌握和向量相互转化能力;具体的解题思路和过程:把未知向量用已知向量来表示(2)222|18.易错点 本题易错一:找不到已知向量,无法把未知向量用已知向量表示;易错二:不会转化,把向量放到同一个直角三角形中;易错三:发现不了在向量上的射影等于|.10. 给出以下命题非零向量满足,则,是的夹角为锐角的充要条件;将函数的图像向左平移1个单位,得到的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小米3小米电视发布会 课件
- 医疗纠纷的心得体会模版
- 《大禹治水》教学设计
- 大学生职业规划大赛《地理科学专业》生涯发展展示
- 临床医学检验技术核心要点
- 精细化管理护理体系构建与实践
- 民办学校校长发言稿模版
- 玉林消防考试题及答案
- 小区物业管理调研报告
- 智慧教育云解决方案
- DL∕T 5161.14-2018 电气装置安装工程质量检验及评定规程 第14部分:起重机电气装置施工质量检验
- 人教版PEP英语3-6年级全部单词默写表格以及背诵版本
- 2024年新课标高考化学真题试题(原卷版+含解析)
- 《一起长大的玩具》整本书阅读(教学设计)统编版语文二年级下册
- 2024公需科目:数字经济与创新驱动发展题库
- 汽车租赁价格动态调整策略研究
- 湖北省武汉市江汉区2023-2024学年七年级下学期期末数学试题
- 专题04语法填空
- DZ∕T 0270-2014 地下水监测井建设规范
- (高清版)JTGT 3365-02-2020 公路涵洞设计规范
- 科普知识小学生飞机科普知识
评论
0/150
提交评论