




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抽象函数与具体函数值域的求法例1已知函数f(x)对任意实数x、y均有f(xy)f(x)f(y),且当x0时,f(x)0,f(1) 2求f(x)在区间2,1上的值域.分析:先证明函数f(x)在R上是增函数(注意到f(x2)f(x2x1)x1f(x2x1)f(x1);再根据区间求其值域.例2已知函数f(x)对任意实数x、y均有f(xy)2f(x)f(y),且当x0时,f(x)2,f(3) 5,求不等式 f(a22a2)0,xN;f(ab) f(a)f(b),a、bN;f(2)4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.分析:先猜出f(x)2x;再用数学归纳法证明.例6设f(x)是定义在(0,)上的单调增函数,满足f(xy)f(x)f(y),f(3)1,求:(1) f(1);(2) 若f(x)f(x8)2,求x的取值范围.分析:(1)利用313;(2)利用函数的单调性和已知关系式.例7设函数y f(x)的反函数是yg(x).如果f(ab)f(a)f(b),那么g(ab)g(a)g(b)是否正确,试说明理由.分析:设f(a)m,f(b)n,则g(m)a,g(n)b,进而mnf(a)f(b) f(ab)f g(m)g(n).例8已知函数f(x)的定义域关于原点对称,且满足以下三个条件: x1、x2是定义域中的数时,有f(x1x2); f(a) 1(a0,a是定义域中的一个数); 当0x2a时,f(x)0. 试问:(1) f(x)的奇偶性如何?说明理由;(2) 在(0,4a)上,f(x)的单调性如何?说明理由. 分析:(1)利用f (x1x2) f (x1x2),判定f(x)是奇函数;(3) 先证明f(x)在(0,2a)上是增函数,再证明其在(2a,4a)上也是增函数. 对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题. 例9已知函数f(x)(x0)满足f(xy)f(x)f(y),(1) 求证:f(1)f(1)0;(2) 求证:f(x)为偶函数;(3) 若f(x)在(0,)上是增函数,解不等式f(x)f(x)0.分析:函数模型为:f(x)loga|x|(a0)(1) 先令xy1,再令xy 1;(2) 令y 1;(3) 由f(x)为偶函数,则f(x)f(|x|).例10已知函数f(x)对一切实数x、y满足f(0)0,f(xy)f(x)f(y),且当x0时,f(x)1,求证:(1) 当x0时,0f(x)1;(2) f(x)在xR上是减函数.分析:(1)先令xy0得f(0)1,再令yx;(3) 受指数函数单调性的启发:由f(xy)f(x)f(y)可得f(xy),进而由x1x2,有f(x1x2)1.练习题:1.已知:f(xy)f(x)f(y)对任意实数x、y都成立,则( )(A)f(0)0 (B)f(0)1 (C)f(0)0或1 (D)以上都不对2. 若对任意实数x、y总有f(xy)f(x)f(y),则下列各式中错误的是( )(A)f(1)0 (B)f() f(x) (C)f() f(x)f(y) (D)f(xn)nf(x)(nN)3.已知函数f(x)对一切实数x、y满足:f(0)0,f(xy)f(x)f(y),且当x0时,f(x)1,则当x0时,f(x)的取值范围是( )(A)(1,) (B)(,1)(C)(0,1) (D)(1,)4.函数f(x)定义域关于原点对称,且对定义域内不同的x1、x2都有f(x1x2),则f(x)为( )(A)奇函数非偶函数 (B)偶函数非奇函数(C)既是奇函数又是偶函数 (D)非奇非偶函数5.已知不恒为零的函数f(x)对任意实数x、y满足f(xy)f(xy)2f(x)f(y),则函数f(x)是( )(A)奇函数非偶函数 (B)偶函数非奇函数(C)既是奇函数又是偶函数 (D)非奇非偶函数参考答案:1A 2B 3 C 4A 5B10. 如何求复合函数的定义域? 义域是_。 复合函数定义域的求法:已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。例 若函数的定义域为,则的定义域为 。分析:由函数的定义域为可知:;所以中有。解:依题意知: 解之,得 的定义域为11、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 求函数y=的值域2、配方法配方法是求二次函数值域最基本的方法之一。例、求函数y=-2x+5,x-1,2的值域。3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂4、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数y=值域。5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。例 求函数y=,的值域。6、函数单调性法 通常和导数结合,是最近高考考的较多的一个内容例求函数y=(2x10)的值域7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 求函数y=x+的值域。8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例:已知点P(x.y)在圆x2+y2=1上, 例求函数y=+的值域。解:原函数可化简得:y=x-2+x+8 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。由上图可知:当点P在线段AB上时,y=x-2+x+8=AB=10当点P在线段AB的延长线或反向延长线上时,y=x-2+x+8AB=10故所求函数的值域为:10,+)例求函数y=+ 的值域解:原函数可变形为:y=+ 上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,由图可知当点P为线段与x轴的交点时, y=AB=,故所求函数的值域为,+)。注:求两距离之和时,要将函数 9 、不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考复习之文言文实词汇编
- 机械顶管专项施工方案
- 2026届贵州省施秉县九年级化学第一学期期中统考模拟试题含解析
- 2026届内蒙古开鲁县联考英语九上期末质量检测试题含解析
- 健康中国2030蓝图
- 2026届安徽省亳州市亳州市第一中学化学九年级第一学期期末教学质量检测模拟试题含解析
- 云南省陆良县2026届九年级化学第一学期期中复习检测试题含解析
- 项目总监工作总结
- 房屋植筋施工方案范文
- 北京市顺义区第一中学2025-2026学年高三上学期9月月考语文试题(含答案)
- 高考作文素材积累与写法总结27 自知与知人作文审题指导及素材积累
- 电子政务概论-形考任务5(在线测试权重20%)-国开-参考资料
- 2024年贵州省贵阳市中考生物地理合卷试题(含答案逐题解析)
- DNDC模型使用手册
- DL∕T 2487-2022 电力燃煤机械名词术语
- 起重机械生产单位质量安全总监-特种设备考试题库
- JBT 9189-2016 水基材料防锈试验方法 铸铁屑试验
- JJF 1064-2024 坐标测量机校准规范
- 《春江花月夜》省公开课金奖全国赛课一等奖微课获奖课件
- 人音版小学六年级上册音乐教案(本)
- 19S406建筑排水管道安装-塑料管道
评论
0/150
提交评论