免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教案:韦达定理(一)张其生一、教学目标 1通过根与系数的关系的发现与推导,进一步培养学生分析、观察、归纳、猜想的能力和推理论证的能力;2通过本节课的学习,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。培养逻辑思维及创新思维能力。二、教学重点、难点 1教学重点:根与系数的关系的发现及其推导2教学难点:韦达定理的灵活应用三、教学过程(一)定理的发现及论证你能否写出一个一元二次方程,使它的两个根分别为 1)2和3 2)4和7问题1:从求这些方程的过程中你发现根与各项系数之间有什么关系?学生:如果方程x2+px+q=0有两个根是x1,x2 那么有x1+ x2=-p, x1 x2=q.观察、思考、探索:2x2-5x+3=0,这个方程的两根之和,两根之积与各项系数之间有什么关系?请猜想?学生:x1+ x2=, x1 x2=教师:如何验证?问题2;对于一元二次方程的一般式ax2+bx+c=0(a0)是否也具备这个特征?学生:x1+x2=-,x1x2=,教师:如何推导一元二次方程两根和与两根积和系数的关系?学生: 设x1、x2是方程ax2+bx+c=0(a0)的两个根,.由此得出,一元二次方程的根与系数的关系(一元二次方程两根和与两根积与系数的关系)韦达定理韦达(法国15401603)结论1如果ax2+bx+c=0(a0)的两个根是x1,x2,那么x1我们就可把它写成x2+px+q=0结论2如果方程x2+px+q0的两个根是x1,x2,那么x1x2-p,x1x2=q结论1具有一般形式,结论2有时给研究问题带来方便(二)定理的应用 判断对错1) 2x2-11x+4=0两根之和11,两根之积为4。 3) x2+x+1=0两实根之和-1,两实根根之积1。 2) 4x2+3x=5两根之和 两根之积例1、关于x的方程x2-2x+m=0 的一根为2 ,求另一根和m的值。练习: k 为何值时,方程两实数根互为倒数。课后思考2:若a、b是方程x2+2x-7=0的两个实数根,求:a3-5b2+b+76的值.(三)总结一元二次方程根与系数的关系的推导是在求根公式的基础上进行它深化了两根的和与积和系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,为进一步学习使用打下坚实基础韦达定理的内容如果ax2+bx+c=0(a0)的两个根是x1,x2,那么x1+x2=-, x1x2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江西省云智大数据产业研究院第二批工作人员招聘2人笔试备考试卷附答案解析
- 2026内蒙古锡林郭勒盟镇沅县教育体育行业急需紧缺人才招聘13人笔试模拟试卷附答案解析
- 2025上海生命科学研究院分子细胞卓越中心褚晏伊组招聘备考公基题库附答案解析
- 2026年青岛西海岸新区教育和体育系统招聘高层次紧缺急需人才(120人)备考公基题库附答案解析
- 2025四川大学华西第二医院招聘外聘门诊医师笔试备考试卷带答案解析
- 2025年阜阳市肿瘤医院(阜阳市颍东区人民医院)招聘劳务派遣人员34名模拟试卷带答案解析
- 2025内蒙古工程项目管理有限公司招聘6人历年真题库带答案解析
- 2026首都医科大学附属北京儿童医院面向应届毕业生(含社会人员)招聘135人历年真题库附答案解析
- 2025年延安市市级机关遴选公务员笔试笔试模拟试卷附答案解析
- 2025年湖南常德津市市第一中学招聘教师4人历年真题汇编附答案解析
- 仲裁机构协议书范本
- 网架安装安全施工方案
- 2025年怀化职业技术学院单招职业技能测试题库必考题
- 宫腔粘连的预防
- 中医内科脾胃系临床思维
- 责任彩票培训课件
- 2024年度中国打印机市场探析:数字化浪潮智能引领打印机市场
- 二级供应商管理
- IT应用系统迁移技术方案
- 2024-2025学年人教版七年级数学上册期末检测试卷
- 小儿外科急腹症护理
评论
0/150
提交评论