B卷压轴题28小题.doc_第1页
B卷压轴题28小题.doc_第2页
B卷压轴题28小题.doc_第3页
B卷压轴题28小题.doc_第4页
B卷压轴题28小题.doc_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

完美WORD格式资料 20102014成都中考试题压轴题分析研究 一真题再现1.(2010成都)28在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线(1)求直线及抛物线的函数表达式;(2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标;(3)设的半径为l,圆心在抛物线上运动,则在运动过程中是否存在与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由并探究:若设Q的半径为,圆心在抛物线上运动,则当取何值时,Q与两坐轴同时相切?【分析】(1)一次函数下移3个单位过原点,可以知道b=3,又点A的坐标和对称轴都知道,则点B的坐标可以知道,把已知的点的坐标代入相应的解析式即可。(2)过点B做直线AC的垂线段BD,则BD是两个三角形的公共高,所以面积比就是底边的比,然后过点P做x轴的垂线段,最后根据相似求值。(3)可以根据题意,分圆与x轴相切、与y轴相切和与两轴都相切三种情况来考虑。解:(1)沿轴向下平移3个单位后恰好经过原点, ,。 将 代入,得。解得。 直线AC的函数表达式为。 抛物线的对称轴是直线解得抛物线的函数表达式为。(2)如图,过点B作BDAC于点D。 , 。过点P作PEx轴于点E, PECO, APEACO, ,解得点P的坐标为(3)()假设Q在运动过程中,存在与坐标轴相切的情况。 设点Q的坐标为。 当Q与y轴相切时,有,即。当时,得,当时,得, 当Q与x轴相切时,有,即当时,得,即,解得,当时,得,即,解得,。综上所述,存在符合条件的Q,其圆心Q的坐标分别为,。()设点Q的坐标为。当Q与两坐标轴同时相切时,有。由,得,即,=此方程无解。由,得,即,解得当Q的半径时,Q与两坐标轴同时相切。【涉及知识点】一次函数的图形及性质、二次函数的图形及性质、相似三角形的有关证明和性质、动点、分情况考虑问题等。【点评】此题具有较高的综合性,考查的知识点非常多,知识之间的衔接自然贯通,难度非常大,作为压轴题,具有很好的区分度,体现了考试的选拔功能。2.(2011.成都)28.如图,在平面直角坐标系中,ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上已知,ABC的面积,抛物线经过A、B、C三点。 (1)求此抛物线的函数表达式; (2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长; (3)在抛物线上是否存在异于B、C的点M,使MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由分析:(1) 由已知设OA=m,则OB=OC=5m,AB=6m,由ABC=ABOC=15,可求m的值,确定A、B、C三点坐标,由A、B两点坐标设抛物线交点式,将C点坐标代入即可;(2)设E点坐标为(m,m24m5),抛物线对称轴为x=2,根据2(m2)=EH,列方程求解;(3)存在因为OB=OC=5,OBC为等腰直角三角形,直线BC解析式为y=x5,则直线y=x+9或直线y=x19与BC的距离为7,将直线解析式与抛物线解析式联立,求M点的坐标即可解答:解:(1)|OA|:|OB|=1:5,|OB|=|OC|,设OA=m,则OB=OC=5m,AB=6m,由ABC=ABOC=15,得6m5m=15,解得m=1(舍去负值),A(1,0),B(5,0),C(0,5),设抛物线解析式为y=a(x+1)(x5),将C点坐标代入,得a=1,抛物线解析式为y=(x+1)(x5),即y=x24x5;(2)设E点坐标为(m,m24m5),抛物线对称轴为x=2,由2(m2)=EH,得2(m2)=(m24m5)或2(m2)=m24m5,解得m=1或m=3,m2,m=1+或m=3+,边长EF=2(m2)=22或2+2;(3)存在由(1)可知OB=OC=5,OBC为等腰直角三角形,直线BC解析式为y=x5,依题意,直线y=x+9或直线y=x19与BC的距离为7,联立,解得或,M点的坐标为(2,7),(7,16)【点评】:本题考查了二次函数的综合运用关键是采用形数结合的方法,准确地用点的坐标表示线段的长,根据图形的特点,列方程求解,注意分类讨论3.(2012.成都)28 如图,在平面直角坐标系xOy中,一次函数 (为常数)的图象与x轴交于点A(,0),与y轴交于点C以直线x=1为对称轴的抛物线 ( 为常数,且0)经过A,C两点,并与x轴的正半轴交于点B (1)求的值及抛物线的函数表达式; (2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由; (3)若P是抛物线对称轴上使ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于 ,两点,试探究 是否为定值,并写出探究过程考点:二次函数综合题。解答:解:(1)经过点(3,0),0=+m,解得m=,直线解析式为,C(0,)抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(3,0),另一交点为B(5,0),设抛物线解析式为y=a(x+3)(x5),抛物线经过C(0,),=a3(5),解得a=,抛物线解析式为y=x2+x+;(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则ACEF且AC=EF如答图1,(i)当点E在点E位置时,过点E作EGx轴于点G,ACEF,CAO=EFG,又,CAOEFG,EG=CO=,即yE=,=xE2+xE+,解得xE=2(xE=0与C点重合,舍去),E(2,),SACEF=;(ii)当点E在点E位置时,过点E作EGx轴于点G,同理可求得E(+1,),SACEF=(3)要使ACP的周长最小,只需AP+CP最小即可如答图2,连接BC交x=1于P点,因为点A、B关于x=1对称,根据轴对称性质以及两点之间线段最短,可知此时AP+CP最小(AP+CP最小值为线段BC的长度)B(5,0),C(0,),直线BC解析式为y=x+,xP=1,yP=3,即P(1,3)令经过点P(1,3)的直线为y=kx+3k,y=kx+3k,y=x2+x+,联立化简得:x2+(4k2)x4k3=0,x1+x2=24k,x1x2=4k3y1=kx1+3k,y2=kx2+3k,y1y2=k(x1x2)根据两点间距离公式得到:M1M2=M1M2=4(1+k2)又M1P=;同理M2P=M1PM2P=(1+k2)=(1+k2)=(1+k2)=4(1+k2)M1PM2P=M1M2,=1为定值4.(2013成都)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,1),C的坐标为(4,3),直角顶点B在第四象限(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由考点:二次函数综合题分析:(1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;(2)i)首先求出直线AC的解析式和线段PQ的长度,作为后续计算的基础若MPQ为等腰直角三角形,则可分为以下两种情况:当PQ为直角边时:点M到PQ的距离为此时,将直线AC向右平移4个单位后所得直线(y=x5)与抛物线的交点,即为所求之M点;当PQ为斜边时:点M到PQ的距离为此时,将直线AC向右平移2个单位后所得直线(y=x3)与抛物线的交点,即为所求之M点ii)由(i)可知,PQ=为定值,因此当NP+BQ取最小值时,有最大值如答图2所示,作点B关于直线AC的对称点B,由分析可知,当B、Q、F(AB中点)三点共线时,NP+BQ最小,最小值为线段BF的长度解答:解:(1)由题意,得点B的坐标为(4,1)抛物线过A(0,1),B(4,1)两点,解得:b=2,c=1,抛物线的函数表达式为:y=x2+2x1(2)i)A(0,1),C(4,3),直线AC的解析式为:y=x1设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上点P在直线AC上滑动,可设P的坐标为(m,m1),则平移后抛物线的函数表达式为:y=(xm)2+m1解方程组:,解得,P(m,m1),Q(m2,m3)过点P作PEx轴,过点Q作QEy轴,则PE=m(m2)=2,QE=(m1)(m3)=2PQ=AP0若MPQ为等腰直角三角形,则可分为以下两种情况:当PQ为直角边时:点M到PQ的距离为(即为PQ的长)由A(0,1),B(4,1),P0(2,1)可知,ABP0为等腰直角三角形,且BP0AC,BP0=如答图1,过点B作直线l1AC,交抛物线y=x2+2x1于点M,则M为符合条件的点可设直线l1的解析式为:y=x+b1,B(4,1),1=4+b1,解得b1=5,直线l1的解析式为:y=x5解方程组,得:,M1(4,1),M2(2,7)当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为如答图1,取AB的中点F,则点F的坐标为(2,1)由A(0,1),F(2,1),P0(2,1)可知:AFP0为等腰直角三角形,且点F到直线AC的距离为过点F作直线l2AC,交抛物线y=x2+2x1于点M,则M为符合条件的点可设直线l2的解析式为:y=x+b2,F(2,1),1=2+b2,解得b1=3,直线l2的解析式为:y=x3解方程组,得:,M3(1+,2+),M4(1,2)综上所述,所有符合条件的点M的坐标为:M1(4,1),M2(2,7),M3(1+,2+),M4(1,2)ii)存在最大值理由如下:由i)知PQ=为定值,则当NP+BQ取最小值时,有最大值如答图2,取点B关于AC的对称点B,易得点B的坐标为(0,3),BQ=BQ连接QF,FN,QB,易得FNPQ,且FN=PQ,四边形PQFN为平行四边形NP=FQNP+BQ=FQ+BPFB=当B、Q、F三点共线时,NP+BQ最小,最小值为的最大值为=点评:本题为二次函数中考压轴题,考查了二次函数的图象与性质、待定系数法、一次函数、几何变换(平移,对称)、等腰直角三角形、平行四边形、轴对称最短路线问题等知识点,考查了存在型问题和分类讨论的数学思想,试题难度较大5.(2014.成都)28.(本小题满分12分) 如图,已知抛物线(为常数,且)与轴从左至右依次交于A,B两点,与轴交于点C,经过点B的直线与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少?【知识点】二次函数综合【答案】(1);(2);(3)。【解析】解:(1)(2)分析:因为点P在第一象限的抛物线上,所以显然有ABP为钝角,所以ABC中一定有一个角是钝角,且只能是ACB,所以ABP=ACB;由题可得:,设;由两点间的距离可得:以A、B、P为顶点的三角形与ABC相似有两种情况:第一种:PAB=ABC则有,所以,m=6,由相似得:,即:,因为k0,解得;第二种:PAB=BAC则有与y轴的交点C与点C将关于x轴对称,C(0,k),又,m=8,由相似得:,即:,因为k0,解得,综上所述,k的值为。(3),提示:如右图。二 考点分析:(2010)1. 待定系数法求直线,抛物线解析式(3个待定系数)2. 等高三角形转化成线段的比,利用相似三角形性质求点P坐标,方程思想3. 动点问题,直线与圆相切性质,分类讨论思想(2011)1. 三角形面积计算2. 线段长与点坐标之间的转化,数形结合3. 待定系数法求抛物线解析式4. 正方形的性质,方程思想5. 存在性问题,分类讨论,直线平移,根据图形特点把距离转化成直角三角形的边长(2012)1. 待定系数法求直线,抛物线解析式2. 存在性问题,分类讨论,平行四边形性质及面积计算,线段长与点坐标之间的转化3. 将军饮马问题(对称性质),根与系数的关系,两点间的距离,定值问题(2013)1. 利用图形特征求点的坐标,待定系数法求解析式2. 等腰平行四边形性质,抛物线平移,直线与抛物线成交点坐标,分类讨论3. 存在性问题,最大值问题转化成PN+BQ最小值(将军饮马问题)4. 图形变换(平移,对称)(2014)1. 待定系数法求解析式2. 分类讨论,相似三角形性质3. 动点问题,点到直线的距离【常考点分析】待定系数法求解析式(一次函数,二次函数或点的坐标)面积问题分类讨论思想,化归思想,方程思想,数形结合思想图形变换(平移,轴对称)等腰三角形,平行四边形,正方形,相似三角形,直角三角形性质等两点间距离公式,根系关系,二次函数与一元二次方程之间关系等动点问题,存在性问题等三 突破方法:压轴题综合要求高,难度大,区分度大,解题时需要考生沉得住气,根据题目条件抓住关键信息,判断类型,找准破题的入手点。(1)抓图形特征:如等腰三角形、等边三角形、特殊的平行四边形、全等三角形等图形特征性质,或适当添加辅助线构造以上特殊图形;(2)抓图形变换,利用平移,轴对称等特征解决问题;(3)善于从较复杂的图形中分离出基本图形,寻找解题的突破口;(4)必要时大胆引入未知量(如设点坐标等)勇敢尝试,利用方程思想等解决问题。四变式练习(一)函数图象中点的存在性问题如图1,已知抛物线(b是实数且b2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C(1)点B的坐标为_,点C的坐标为_(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得QCO、QOA和QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由 图1思路点拨1第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等2联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示3第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上解答(1)B的坐标为(b, 0),点C的坐标为(0, )(2)如图2,过点P作PDx轴,PEy轴,垂足分别为D、E,那么PDBPEC因此PDPE设点P的坐标为(x, x)如图3,联结OP所以S四边形PCOBSPCOSPBO2b解得所以点P的坐标为()图2 图3(3)由,得A(1, 0),OA1如图4,以OA、OC为邻边构造矩形OAQC,那么OQCQOA当,即时,BQAQOA所以解得所以符合题意的点Q为()如图5,以OC为直径的圆与直线x1交于点Q,那么OQC90。因此OCQQOA当时,BQAQOA此时OQB90所以C、Q、B三点共线因此,即解得此时Q(1,4)图4 图5考点延伸第(3)题的思路是,A、C、O三点是确定的,B是x轴正半轴上待定的点,而QOA与QOC是互余的,那么我们自然想到三个三角形都是直角三角形的情况这样,先根据QOA与QOC相似把点Q的位置确定下来,再根据两直角边对应成比例确定点B的位置如图中,圆与直线x1的另一个交点会不会是符合题意的点Q呢?如果符合题意的话,那么点B的位置距离点A很近,这与OB4OC矛盾(二)因动点产生的面积问题如图1,已知抛物线(b、c是常数,且c0)与x轴交于A、B两点(点A在点B的左侧),与y轴的负半轴交于点C,点A的坐标为(1,0)(1)b_,点B的横坐标为_(上述结果均用含c的代数式表示);(2)连结BC,过点A作直线AE/BC,与抛物线交于点E点D是x轴上一点,坐标为(2,0),当C、D、E三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连结PB、PC设PBC的面积为S求S的取值范围;若PBC的面积S为正整数,则这样的PBC共有_个图1 思路点拨1用c表示b以后,把抛物线的一般式改写为两点式,会发现OB2OC2当C、D、E三点共线时,EHACOB,EHDCOD3求PBC面积的取值范围,要分两种情况计算,P在BC上方或下方4求得了S的取值范围,然后罗列P从A经过C运动到B的过程中,面积的正整数值,再数一数个数注意排除点A、C、B三个时刻的值解答(1)b,点B的横坐标为2c(2)由,设E过点E作EHx轴于H由于OB2OC,当AE/BC时,AH2EH所以因此所以当C、D、E三点在同一直线上时,所以整理,得2c23c20解得c2或(舍去)所以抛物线的解析式为(3)当P在BC下方时,过点P作x轴的垂线交BC于F直线BC的解析式为设,那么,所以SPBCSPBFSPCF因此当P在BC下方时,PBC的最大值为4当P在BC上方时,因为SABC5,所以SPBC5综上所述,0S5 PBC的面积S为正整数,则这样的PBC共有11个考点延伸点P沿抛物线从A经过C到达B的过程中,PBC的面积为整数,依次为(5),4,3,2,1,(0),1,2,3,4,3,2,1,(0)当P在BC下方,S4时,点P在BC的中点的正下方,F是BC的中点(三)图形运动中的函数关系问题如图1,抛物线与x轴交于A、B两点,与y轴交于点C,联结BC、AC(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作BC的平行线交AC于点D设AE的长为m,ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,联结CE,求CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)图1思路点拨1ADE与ACB相似,面积比等于对应边的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论