




已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
丰田小霸王汽车传动系毕业设计论文目 录第1章 绪论11.1 研究背景11.2 研究意义11.3 研究内容2第2章 丰田小霸王的原始数据及工作要求32.1 原始参考数据3第3章 万向传动轴设计43.1 万向传动轴的概述43.2 万向传动轴的应用53.3 万向节结构方案分析63.3.1 十字轴式万向节63.3.2 准等速万向节73.3.3 等速万向节83.3.4 挠性万向节93.4 传动轴和中间支承93.5 万向传动的运动和受力分析103.5.1 单十字轴万向节传动103.5.2 双十字轴万向节传动113.6 丰田小霸王万向传动轴结构分析及选型123.7 计算传动轴载荷133.8 万向传动轴设计及强度校核143.8.1 传动轴的临界转速143.8.4 传动轴扭转强度校核153.8.5 花键内外径确定153.8.6 花键挤压强度校核163.9 十字轴万向节设计17第4章 驱动桥的设计204.1 驱动桥的结构形式及选择204.1.2 驱动桥的结构形式204.1.3 驱动桥构件的结构形式224.2 驱动桥的设计计算274.2.2 差速器的设计与计算41结论49参考文献50谢辞51I丰田小霸王传动系设计第1章 绪论1.1 研究背景 随着社会的发展,人类出行与运输的范围越来越广,频率越来越高,节奏越来越快,所以人类就对出行和运输所用的工具特别重视,不断的开发新品种,汽车就是人类开发出来的杰出产品。进入20世纪以来,全世界的汽车保有量越来越多,特别是第二次世界大战以后汽车发动机用的主要仍是石油燃料,随着国民经济的进步和交通运输的发展,能源供给日趋紧张。因此,提高汽车的运输生产力,提高汽车的传动效率,降低汽车的燃料消耗,是目前汽车工业急需解决的问题之一。汽车传动系是位于发动机和驱动车轮之间的动力传动装置,其基本功用是将发动机发出的动力传给驱动轮。因此,汽车传动系统是汽车上最主要的动力传动装置。很多汽车故障与传动系统的故障有关。汽车传动系将直接影响着汽车行驶性和启动性。 随着经济水平的迅速发展和人们生活水平的提高以及生活节奏的不断加快,保证行车方便、快捷、舒适,汽车传动系的工作可靠性显得日益重要。也只有性能良好、传动系工作可靠的汽车,才能充分发挥汽车的动力性能。而传动系统的总成是由十字轴万向节、传动轴、主减速器、差速器等组成的,是传递驱动力驱动汽车车轮,其性能直接影响到传动系统的稳定性和可靠性。1.2 研究意义传动系是三维复杂结构,属于非线性结构分析的领域,同样受到了相同的限制。传动系的分析都是在理论和经验的基础上,通过一定的假设和简化进行的,通过简化所获得的结果却又重新累计为复杂的模型,因此缺乏有效的使用性。这是数学推导中很难避免的现象。因为理论模型采用的一般都是连续性的近似曲线公式,而现实中的数据大多是离散的,是宏观上的有规律性和微观上的无规律性的对立统一。因此,理论分析的对象始终受到了技术上的限制而无法扩展到更加复杂的研究领域。随着计算机技术的发展,以及相应的大批的具有CAD/CAE/CAM功能的工程软件ANSYS、ADINA、SOLIDWORKS、UG、I-DEAS等的广泛的应用,才使得对复杂的制动器研究对象的分析得到了飞速的发展,现在对汽车传动系的设计可以在得出相关参数后直接利用三维制图软件进行离合器各个零部件的三维实体建模、装配,这样可以立体的直观的看到所设计的汽车传动系的实体以使所开发设计的产品的性能达到最优的目的。这样利用电脑软件辅助制图不仅缩短了产品的开发周期,而且也提高了产品的质量,大大降低了产品的开发成本,这样也就使产品在激烈的市场经济竞争中更具有竞争力。1.3 研究内容(1) 完成汽车的总体布置和参数选择;(2) 汽车十字轴万向节、传动轴、主减速器和差速器方案的确定;(3) 十字轴万向节、传动轴、主减速器及差速器等部件的设计计算及校核;(4) 基于Solidworks进行个零部件的三维模型构建、装配,并绘制二维工程图。第2章 丰田小霸王的原始数据及工作要求2.1 原始参考数据 发动机: 最大转矩:189/4400 最大功率:104/5600 整车基本参数: 整车装备质量/kg 1415 满载总质量/kg 2455 长/宽/高(mm): 4625/1720/1590 轴距/mm 2750 轮距/mm 前轮 1505 后轮 1470 最小离地间隙/mm 后桥下 195 轮胎规格 195/60 R16 变速器各挡传动比: 1挡 4.218 2挡 2.637 3挡 1.646 4挡 1.0 5挡 0.845 倒档 4.2952.2 技术及工作要求:(1)了解汽车传动系中十字万向节、传动轴、主减速器、差速器各部件的工作原理和设计的基本理论。(2)十字万向节、传动轴设计方案的确定。(3)主减速器、差速器齿轮主要参数的选择、设计。(4)校核十字轴万向节轴颈抗弯强度和滚针轴承的接触应力。(5)校核传动轴的强度、花键轴的强度。(6)校核主减速器齿轮的弯曲强度和接触强度。(7)校核差速器齿轮的弯曲强度。(8)基于SolidWorks进行各零部件的三维模型构建、装配,并绘制二维工程图。第3章 万向传动轴设计3.1 万向传动轴的概述 万向传动轴一般是由万向节、传动轴和中间支承组成。主要用于在工作过程中相对位置不节组成。伸缩套能自动调节变速器与驱动桥之间距离的变化。万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。传动轴总成主要由传动轴及其两端焊接的花键轴和万向节叉组成。传动轴中一般设有由滑动叉和花键轴组成的滑动花键,以实现传动长度的变化。传动轴的长度和夹角及它们的变化范围由汽车总布置设计决定。设计时应保证在传动轴长度处在最大值时,花键套与轴有足够的配合长度;而在长度处在最小时不顶死。传动轴夹角的大小直接影响到万向节十字轴和滚针轴承的寿命、万向传动的效率和十字轴旋转的不均匀性。 在长度一定时,传动轴断面尺寸的选择应保证传动轴有足够的强度和足够高的临界转速。图 3-1 变速器与驱动桥之间的万向传动装置万向传动轴设计应满足如下基本要求:1) 保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。 2) 保证所连接两轴尽可能等速运转。3) 由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。 4) 传动效率高,使用寿命长,结构简单,制造方便,维修容易等。3.2 万向传动轴的应用在现代汽车的总体布置中,发动机、离合器和变速箱连成一体固装在车架上,而驱动桥则通过弹性悬架与车架连接。由此可见,变速器输出轴轴线与驱动桥的输入轴轴线不在同一平面上。当汽车行驶时,车轮的跳动会造成驱动桥与变速器的相对位置(距离、夹角)不断变化,故变速器的输出轴与驱动桥的输入轴不可能刚性连接,必须安装有万向传动装置。图3-2 万向传动装置在汽车传动系统中的应用与布置万向传动轴在汽车上的应用比较广泛。发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动器输入轴轴线之间的相对位置经常变化,因普遍采用可伸缩的十字轴万向传动轴;某些汽车根据总布置要求需将离合器与变速器、变速器与分动器之间拉开一段距离,考虑到它们之间很难保证轴与轴同心及车架的变形,所以常采用十字轴万向传动轴或挠性万向传动轴;对于转向驱动桥,左、右驱动轮需要随汽车行驶轨迹变化而改变方向,这时多采用等速万向传动轴。此外,由于越野汽车的前轮既是转向轮又是驱动轮。作为转向轮,要求在转向时可以在规定范围内偏转一定角度;作为驱动轮,则要求半轴在车轮偏转过程中不间断地把动力从主减速器传到车轮。因此,半轴不能制成整体而必须分段,中间用等角速万向节相连。3.3 万向节结构方案分析万向节是实现变角度动力传递的机件,用于需要改变传动轴线方向的位置,它是汽车驱动系统的万向传动装置“关节”部件。万向节与传动轴组合,称为万向节传动装置。 在前置发动机后轮驱动的车辆上,万向节传动装置安装在变速器输出轴与驱动桥主减速器输入轴之间;而前置发动机前轮驱动的车辆省略了传动轴,万向节安装在既负责驱动又负责转向的前桥半轴与车轮之间。万向节分为刚性万向节和挠性万向节。刚性万向节是靠零件的铰链式联接传递的;可分为不等速万向节(如十字轴式)、准等速万向节(如双联式、凸块式、三销轴式等)和等速万向节(如球叉式、球笼式等)。不等速万向节是指万向节连接的两轴夹角大于零时,输出轴和输入轴之间以变化的瞬时角速度比传递运动的万向节。准等速万向节是指在设计角度下工作时以等于1的瞬时角速度比传递运动,而在其它角度下工作时瞬时角速度比近似等于1的万向节。输出轴和输入轴以等于1的瞬时角速度比传递运动的万向节,称之为等速万向节。 挠性万向节则是靠弹性零件传递动力的,如橡胶盘、橡胶块等,具有缓冲减振作用。由于弹性元件的变形量有限,因而挠性万向节一般用于两轴间夹角不大以及有微量轴向位移的轴间传动。 万向节的结构和作用有点象人体四肢上的关节,它允许被连接的零件之间的夹角在一定范围内变化。为满足动力传递、适应转向和汽车运行时所产生的上下跳动所造成的角度变化,前驱动汽车的驱动桥,半轴与轮轴之间常用万向节相连。但由于受轴向尺寸的限制,要求偏角又比较大,单个的万向节不能使输出轴与轴入轴的瞬时角速度相等,容易造成振动,加剧机件的损坏,产生很大的噪音,所以广泛采用各式各样的等速万向节。在前驱动汽车上,每个半轴用两个等速万向节,靠近变速驱动桥的万向节是半轴内侧万向节,靠近车轴的是半轴外侧万向节。在后驱动汽车上,发动机、离合器与变速器作为一个整体安装在车架上,而驱动桥通过弹性悬挂与车架连接,两者之间有一个距离,需要进行连接。汽车运行中路面不平产生跳动,负荷变化或者两个总成安装的位差等,都会使得变速器输出轴与驱动桥主减速器输入轴之间的夹角和距离发生变化,因此在后驱动汽车的万向节传动形式都采用双万向节,就是传动轴两端各有一个万向节,其作用是使传动轴两端的夹角相等,保证输出轴与轴入轴的瞬时角速度始终相等。 3.3.1 十字轴式万向节 十字轴式刚性万向节为汽车上广泛使用的不等速万向节,允许相邻两轴的最大交角为1520。下图所示的十字轴式万向节由一个十字轴2,两个万向节叉和四个滚针轴承5等组成。两万向节叉3和6上的孔分别套在十字轴2的两对轴颈上。这样当主动轴转动时,从动轴既可随之转动,又可绕十字轴中心在任意方向摆动,这样就适应了夹角和距离同时变化的需要。在十字轴轴颈和万向节叉孔间装有滚针轴承5,滚针轴承外圈靠卡环轴向定位。为了润滑轴承,十字轴上一般安有注油嘴并有油路通向轴颈。润滑油可从注油嘴注到十字轴轴颈的滚针轴承处。十字轴万向节结构简单,强度高,耐久性好,传动效率高,生产成本低,在两轴夹角不为零的情况下,不能传递等角速转动。所连接的两轴夹角不宜过大,当夹角由4增至16时,十字轴万向节滚针轴承寿命约下降至原来的1/4。图3-3 十字轴式万向节1、套筒 2、十字轴3、万向节叉 4、卡环 5、滚针轴承 6、万向节叉3.3.2 准等速万向节1) 双联式万向节a) 双联式万向节是由两个十字轴万向节组合而成。为了保证两万向节连接的轴工作转速趋于相等,可设有分度机构。偏心十字轴双联式万向节取消了分度机构,也可确保输出轴与输入轴接近等速。b) 双联式万向节的主要优点是允许两轴间的夹角较大(一般可达50,偏心十字轴双联式万向节可达60),轴承密封性好,效率高,工作可靠,制造方便。缺点是结构较复杂,外形尺寸较大,零件数目较多。多用于军用越野转向驱动桥。2) 凸块式万向节a) 凸块式万向节主要有两个万向节叉以及两个不同形状的特殊凸块组成,两凸块相当于双联式万向节装置中两端带有位于同一平面上的两万向节叉的中间轴及两十字销,因此保证输入轴与输出轴近似等速,这种结构工作可靠,加工简单,允许的夹角较大(50),但是由于工作面为全滑动摩擦,摩擦表面易磨损,所以效率低,并对密封和润滑要求高。它主要用于传递转矩较大的越野车转向驱动桥。3) 三销轴式万向节a) 三销轴式万向节是由于双联式万向节演变而来,主要由两个偏心轴叉、两个三销轴和六个滚针轴承及其密封件等组成。它的特点:允许的两轴最大夹角可达45,易于密封,但其外形尺寸大,结构复杂,毛坯需精锻。这种结构主要用于个别中、重型越野车转向驱动桥。3.3.3 等速万向节1)球叉式万向节 球叉式万向节按其钢球滚道形状不同可分为圆弧槽和直槽两种形式。圆弧槽滚道型的球叉式万向节(图3-4a)由两个万向节叉、四个传力钢球和一个定心钢球组成。两球叉上的圆弧槽中心线是以O1和O2为圆心而半径相等的圆,O1和O2到万向节中心O的距离相等。 当万向节两轴绕定心钢球中心O转动任何角度时,传力钢球中心始终在滚道中心两圆的交点上,从而保证输出轴与输入轴等速转动。 球叉式万向节结构较简单,可以在夹角不大于3233的条件下正常工作。直槽滚道型球叉式万向节(图3-4b),两个球叉上的直槽与图 3-4 球叉式万向节a)圆弧槽滚道型 b)直槽滚道型轴的中心线倾斜相同的角度,彼此对称。在两球叉间的槽中装有四个钢球。由于两球叉中的槽所处的位置是对称的,这便保证了四个钢球的中心处于两轴夹角的平分面上。这种万向节加工比较容易,允许的轴间夹角不超过20,在两叉间允许有一定量的轴间滑动。 2)球笼式万向节球笼式万向节是目前应用最为广泛的等速万向节。Rzeppa 型球笼式万向节(图3-5)是带分度杆的,六个传力钢球2由球笼4保持在同一平面内。当万向节两轴之间的夹角变化时,靠比例合适的分度杆6拨动导向盘5,并带动球笼4使六个钢球2处于轴间夹角的平分面上。 经验表明,当轴间夹角较小时,分度杆是必要的;当轴间夹角大于11时,仅靠球形壳和星形套上的子午滚道的交叉也可将钢球定在正确位置。这种等速万向节可在两轴之间的夹角达到3537的情况下工作。 图3-5 Rzeppaz型球笼式万向节1球形壳 2钢球 3星形套4球笼 5导向盘 6分度杆 3.3.4 挠性万向节挠性万向节依靠橡胶元件的弹性变形来保证在相交两轴间传动时不发生干涉。它的特点是能减小扭转振动、动载荷、噪声结构简单,不用润滑用于两轴间夹角不大(35),轴向位移小的场合。适用于轿车三万向节传动中的靠近变速器的第一节;重型汽车发动机与变速器之间;越野车变速器与分动器之间,以消除制造安装误差和车架变形对传动的影响。3.4 传动轴和中间支承在有一定距离的两部件之间采用万向传动装置传递动力时,一般需要在万向节之间安装传动轴。若两部件之间的距离会发生变化,而万向节又没有伸缩功能时,则还要将传动 图3-6 1、变速器 2、中间支承3、 后驱动桥 4、后传动轴 5、轴承 6、前传动轴轴做成两段,用滑动花键相连接。为减小传动轴花键连接部分的轴向滑动阻力和摩损,需加注润滑脂进行润滑,也可以对花键进行磷化处理或喷涂尼龙层,或是在花键槽内设置滚动元件。 在传动距离较长时,往往将传动轴分段,即在传动轴前增加带中间支承的前传动轴。 3.5 万向传动的运动和受力分析3.5.1 单十字轴万向节传动当十字轴万向节的主动轴与从动轴存在一定夹角时,主动轴的角速度与从动轴的角速度之间存在如下的关系: 由于cos是周期为2的周期函数,所以 也为同周期的周期函数。当为0、时,达最大值且为;当为/2、3/2时,有最小值且为。因此,当主动轴以等角速度转动时,从动轴时快时慢,此即为普通十字轴万向节传动的不等速性。十字轴万向节传动的不等速性可用转速不均匀系数K来表示 如不计万向节的摩擦损失,主动轴转矩T1和从动轴转矩T2与各自相应的角速度有关系式 ,这样有 显然,当 最小时,从动轴上的转矩为最大值,; 当最大时,从动轴上的转矩为最小 。与一定时,在其最大值与最小值之间每一转变化两次。 具有夹角的十字轴万向节,仅在主动轴驱动转矩和从动轴反转矩的作用下是不能平衡的。从万向节叉与十字轴之间的约束关系分析可知,主动叉对十字轴的作用力偶矩,除主动轴驱动转矩T之外,还有作用在主动叉平面的弯曲力偶矩T。同理,从动叉对十字轴也作用有从动轴反转矩T和作用在从动叉平面的弯曲力偶矩T。在这四个力矩作用下,使十字轴万向节得以平衡。 下面仅讨论主动叉在两特殊位置时,附加弯曲力矩的大小及变化特点。 当主动叉处于0和位置时(图3-7a),由于T作用在十字轴平面,故T必为零;而T的作用平面与十字轴不共面,必有T存在,且矢量T 垂直于矢量T;合矢量T+ T指向十字轴平面的法线方向,与T大小相等、方向相反。这样,从动叉上的附加弯矩T= Tsin。当主动叉处于/2和3/2位置时(图3-7b),同理可知T为零,主动叉上的弯矩TTtan。 图3-7 字轴万向节的力偶矩a) =0、 b) /2、3/2 分析可知,附加弯矩T、的大小是在零与上述两最大值之间变化,其变化周期为 ,即每一转变化两次。附加弯矩可引起与万向节相连零部件的弯曲振动,可在万向节主、从动轴支承上引起周期性变化的径向载荷,从而激起支承处的振动。因此,为了控制附加弯矩,应避免两轴之间的夹角过大。 3.5.2 双十字轴万向节传动 当输入轴与输出轴之间存在夹角时,单个十字轴万向节的输出轴相对于输入轴是不等速旋转的。为使处于同一平面的输出轴与输入轴等速旋转,可采用双万向节传动,但必须保证同传动轴相连的两万向节叉应布置在同一平面内,且使两万向节夹角1与2相等(图3-8)。 在双万向节传动中,直接与输入轴和输出轴相连的万向节叉所受的附加弯矩分别由相应轴的支承反力平衡。当输入轴与输出轴平行时(图3-8a),直接连接传动轴的两万向节叉所受的附加弯矩,使传动轴发生如图(3-8b)中双点划线所示的弹性弯曲,从而引起传动轴的弯曲振动。当输入轴与输出轴相交时(图3-8c),传动轴两端万向节叉上所受的附加弯矩方向相同,不能彼此平衡,传动轴发生如(图3-8d)中双点划线所示的弹性弯曲。 图3-8 附加弯矩对传动轴的作用3.6 丰田小霸王万向传动轴结构分析及选型由于丰田小霸王车轴距不算太长,所以不选中间支承,只选用一根主传动轴,此款车发动机为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据轿车的总体布置要求,将离合器与变速器、变速器与分动器之间拉开一段距离,考虑到它们之间很难保证轴与轴同心及车架的变形,所以采用十字轴万向传动轴,为了避免运动干涉,在传动轴中设有由滑动叉和花键轴组成的伸缩节,以实现传动轴长度的变化。空心传动轴具有较小的质量,能传递较大的转矩,比实心传动轴具有更高的临界转速,所以此传动轴管采用空心传动轴。传动轴的长度和夹角及它们的变化范围,由汽车总布置设计决定。设计时应保证在传动轴长度处在最大值时,花键套与花键轴有足够的配合长度;而在长度处于最小时,两者不顶死。传动轴夹角大小会影响万向节十字轴和滚针轴承的寿命、万向传动效率和十字轴的不均匀性。变化范围为。 传动轴经常处于高速旋转状态下,所以轴的材料查机械零件手册选取40CrNi,适用于很重要的轴,具有较高的扭转强度。一、传动轴管选择 传动轴管由低碳钢板制壁厚均匀、壁薄(1.53.0mm)、管径较大、易质量平衡、扭转强度高、弯曲刚度高、适用高速旋转的电焊钢管制成。二、 伸缩花键选择选择矩形花键,用于补偿由于汽车行驶时传动轴两端万向节之间的长度变化。为减小阻力及磨损,对花键齿磷化处理或喷涂尼龙,外层设有防尘罩,间隙小一些,以免引起传动轴的震动。花键齿与键槽按对应标记装配,以保持传动轴总成的动平衡。动平衡的不平衡度由电焊在轴管外的平衡片补偿。装车时传动轴的伸缩花键一端应靠近变速器,减小其轴向阻力和磨损。其结构图如下图:图 3-8 万向传动轴花键轴结构简图1-盖子;2-盖板;3-盖垫;4-万向节叉;5-加油嘴;6-伸缩套;7-滑动花键槽;8-油封;9-油封盖;10-传动轴管3.7 计算传动轴载荷 由于发动机前置后驱,根据参考文献1,位置采用:用于变速器与驱动桥之间按发动机最大转矩和一档传动比来确定根据丰田小霸王数据:1) 发动机最大转矩Temax=189Nm ;2) 驱动桥数n=2(参考文献1表4-2);3) 发动机到万向传动轴之间的传动效率=0.85;4) 液力变矩器变矩系数k=(k0 -1)/2+1=1.615,k。为液力变矩器变矩系数;5) 满载状态下一个驱动桥上的静载G2=65%mag=0.6524559.8=15638.35N;6) 发动机最大加速度的后轴转移系数m2=1.3(乘用车:=1.2-1.4);7) 轮胎与路面间的附着系数=0.85;8) 车轮滚动半径rr=m;9) 主减速器从动齿轮到车轮之间传动比im=1;10) 主减速器主动齿轮到车轮之间传动效率m=0.90.85=0.765;11) 猛接离合器所产生的动载系数=1;12) 主减速器传动比i0=4.5;13) 变速器一档传动比i1=4.218;所以: =2308.003Nm =1606.310Nm T1= Tss1=1606.310Nm=1606310Nmm 3.8 万向传动轴设计及强度校核3.8.1 传动轴的临界转速长度一定时,传动轴断面尺寸的选择应保证传动轴有足够的强度和足够高的临界转速。所谓临界转速,就是当传动轴的工作转速接近于其弯曲固有振动频率时,即出现共振现象,以致振幅急剧增加而引起传动轴折断时的转速。传动轴的临界转速为nk(r/min),在设计传动轴时,取安全系数K= nk/nmax=1.2-2.0,安全系数K=1.2,适用一般精度的伸缩花键则有 (为发动机最大转速) K=, 3.8.2 传动轴长度选择根据轴距2750mm,初选传动轴支承长度为 mm,花键轴长度应小于支承长度,满足万向节与传动轴的间隙要求,取花键轴长度为。3.8.3 传动轴管内外径确定得又初取 , 则式中,Lc为传动轴长度(mm),即两万向节中心之间的距离;dc和Dc分别为传动轴轴管的内、外径(mm)3.8.4 传动轴扭转强度校核 由于传动轴只承受扭转应力而不承受弯曲应力,所以只需校核扭转强度,根据公式有 (为轴管许用扭转应力)上式说明设计参数满足扭转强度要求3.8.5 花键内外径确定 取安全系数23,则 为许用扭转应力 花键外径 花键内径 为花键有效工作长度 B为键齿宽 为花键齿数 由于花键齿侧许用挤压应力较小,所以选用较大尺寸的花键,查参考文献2表4-3,取,,。3.8.6 花键挤压强度校核式中 为花键转矩分布不均匀系数,取1.3, 花键外径, 花键内径, 为花键有效工作长度, 为花键齿数。 当花键齿面硬度为35HRC时,许用挤压应力为则,满足花键挤压强度。 传动轴总成的不平衡是传动系弯曲振动的一个激励源,当高速旋转时,将产生明显的振动和噪声。万向节中十字轴的轴向窜动、传动轴滑动花键中的间隙、传动轴总成两端连接处的定心精度、高速回转时传动轴的弹性变形、传动轴上点焊平衡片时的热影响等因素,都能改变传动轴总成的不平衡度。提高滑动花键的耐磨性和万向节花键的配合精度、缩短传动轴长度并增加其弯曲刚度,都能降低传动轴的不平衡度。为了消除点焊平衡片的热影响,应在冷却后在进行动平衡检验。传动轴的不平衡性,对于乘用车,在30006000 r/min时应不大于2535g;另外,传动轴总成的径向全跳动应不大于0.50.8。3.9 十字轴万向节设计 设作用于十字轴轴颈中点的力为F(图3-9),则F= T1/2rcos=Nr为合力F作用线到十字轴中心之间的距离;为主、从动叉轴的最大夹角。 十字轴轴颈根部的弯曲应力w和切应力应满足w=w = (a) (b) 图3-9 十字轴及万向节叉受力图(a) 十字轴 (b)万向节叉式中,取十字轴轴颈直径d1=38.2mm,十字轴油道孔直径d2=10mm,合力F作用线到轴颈根部的距离s=14mm,w为弯曲应力的许用值,为250-350Mpa,为切应力的许用值,为80-120 Mpaw= = 故十字轴轴颈根部的弯曲应力和切应力满足校核条件 十字轴滚针的接触应力应满足=272式中,取滚针直径d0=3mm,滚针工作长度Lb=27mm,在合力F作用下一个滚针所受的最大载荷Fn=,式中i为滚针列数,Z为每列中的滚针数。当滚针和十字轴轴颈表面硬度在58HRC以上时,许用接触应力为3000-3200 Mpa=272=故十字轴滚针轴承的接触应力校核满足。 万向节叉与十字轴组成连接支承,在力F作用下产生支承反力,在与十字轴轴孔中心线成45的B-B的截面处,万向节叉承受弯曲和扭转载荷,其弯曲应力w和扭应力b应满足:w=Fe/Wwb=Fa/Wtb式中,W、Wt 分别截面B-B处的抗弯截面系数和抗扭截面系数,矩形面时W=bh2/6, Wt=khb2。取a=40mm,e=80mm,b=35mm,h=70mm,查参考文献1,取k=0.246, 弯曲应力的许用值w为50-80Mpa,扭应力的许用值b为80-160 Mpaw=Fe/W=32.43Mpa wb=Fa/Wt=21.97 Mpab故万向节叉承受弯曲和扭转载荷校核满足要求。 十字轴万向节的传动效率与两轴的轴间夹角,十字轴的支承结构和材料加工和装配精度以及润滑条件等有关。当25时,可按下式计算(取=15)0=1-f()=1-0.07()=99.35%式中,0为十字轴万向节传动效率;f为轴颈与万向节叉的摩擦因数,滑动轴承:f=0.15 0.20,滚动轴承:f=0.05 0.10,取f=0.07。 通常情况下,十字轴万向节的传动效率约为97%99%十字轴的材料选为20CrMnTi、20Cr、20MnVB、12CrNi3A等低碳合金钢,轴颈表面进行渗碳淬火处理,渗碳层深度为0.81.2,表面硬度为5864HRC,轴颈断面硬度不低于55HRC,心部硬度为3348HRC.万向节叉一般采用35、40、45中碳钢或中碳合金钢40CrNiM0A,经调质处理,硬度为1833HRC,滚针轴承碗材料一般采用GCr15。第4章 驱动桥的设计4.1 驱动桥的结构形式及选择4.1.1 概述 驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。驱动桥设计应当满足如下基本要求:a)所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。b)外形尺寸要小,保证有必要的离地间隙。c)齿轮及其它传动件工作平稳,噪声小。d)在各种转速和载荷下具有高的传动效率。e)在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。 f)与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。g)结构简单,加工工艺性好,制造容易,拆装,调整方便。驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构较复杂,但可以大大提高汽车在不平路面上的行驶平顺性。 4.1.2 驱动桥的结构形式(1) 非断开式驱动桥普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可采用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。(2) 断开式驱动桥断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的一部分轿车及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。(3) 多桥驱动的布置为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车都是采用多桥驱动,常采用的有44、66、88等驱动型式。在多桥驱动的情况下,动力经分动器传给各驱动桥的方式有两种。相应这两种动力传递方式,多桥驱动汽车各驱动桥的布置型式分为非贯通式与贯通式。前者为了把动力经分动器传给各驱动桥,需分别由分动器经各驱动桥自己专用的传动轴传递动力,这样不仅使传动轴的数量增多,且造成各驱动桥的零件特别是桥壳、半轴等主要零件不能通用。而对88汽车来说,这种非贯通式驱动桥就更不适宜,也难于布置了。为了解决上述问题,现代多桥驱动汽车都是采用贯通式驱动桥的布置型式。在贯通式驱动桥的布置中,各桥的传动轴布置在同一纵向铅垂平面内,并且各驱动桥不是分别用自己的传动轴与分动器直接联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥的动力,是经分动器并贯通中间桥而传递的。其优点是,不仅减少了传动轴的数量,而且提高了各驱动桥零件的相互通用性,并且简化了结构、减小了体积和质量。这对于汽车的设计(如汽车的变型)、制造和维修,都带来方便。由于非断开式驱动桥结构简单、造价低廉、工作可靠,查阅资料,参照国内相关货车的设计,最后本课题选用非断开式驱动桥。4.1.3 驱动桥构件的结构形式主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及质量减小、操纵省力。 驱动桥中主减速器、差速器设计应满足如下基本要求:a)所选择的主减速比应能保证汽车既有最佳的动力性和燃料经济性。b)外型尺寸要小,保证有必要的离地间隙;齿轮其它传动件工作平稳,噪音小。c)在各种转速和载荷下具有高的传动效率;与悬架导向机构与动协调。d)在保证足够的强度、刚度条件下,应力求质量小,以改善汽车平顺性。e)结构简单,加工工艺性好,制造容易,拆装、调整方便。4.1.3.1 主减速器的结构形式(1) 主减速器结构方案分析 主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动、双曲面齿轮式传动、圆柱齿轮式传动(又可分为轴线固定式齿轮传动和轴线旋转式齿轮传动即行星齿轮式传动)和蜗杆蜗轮式传动等形式。在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮;在发动机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。为了减少驱动桥的外轮廓尺寸,主减速器中基本不用直齿圆锥齿轮而采用螺旋锥齿轮。因为螺旋锥齿轮不发生根切(齿轮加工中产生轮齿根部切薄现象,致使齿轮强度大大降低)的最小齿数比直齿轮的最小齿数少,使得螺旋锥齿轮在同样的传动比下主减速器结构较紧凑。此外,螺旋锥齿轮还具有运转平稳、噪声小等优点,汽车上获得广泛应用。近年来,有些汽车的主减速器采用准双曲面锥齿轮(车辆行业中简称双曲面传动)传动。准双曲面锥齿轮传动与圆锥齿轮相比,准双曲面齿轮传动不仅工作平稳性更好,弯曲强度和接触强度更高,同时还可使主动齿轮的轴线相对于从动齿轮轴线偏移。当主动准双曲面齿轮轴线向下偏移时,可降低主动锥齿轮和传动轴位置,从而有利于降低车身及整车重心高度,提高汽车行使的稳定性。东风EQ1090E型汽车即采用下偏移准双曲面齿轮。但是,准双曲面齿轮传递转矩时,齿面间有较大的相对滑动,且齿面间压力很大,齿面油膜很容易被破坏。为减少摩擦,提高效率,必须采用含防刮伤添加剂的双曲面齿轮油,绝不允许用普通齿轮油代替,否则将时齿面迅速擦伤和磨损,大大降低使用寿命。经方案论证,主减速器的齿轮选用螺旋锥齿轮传动形式(如图4-1示)。螺旋锥齿轮传动的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时捏合,所以它工作平稳、能承受较大的负荷、制造也简单。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。图4-1螺旋锥齿轮传动(2) 主减速器的减速形式为了满足不同的使用要求,主减速器的结构形式也是不同的。按参加减速传动的齿轮副数目分,有单级式主减速器和双级式主减速器、双速主减速器、双级减速配以轮边减速器等。双级式主减速器应用于大传动比的中、重型汽车上,若其第二级减速器齿轮有两副,并分置于两侧车轮附近,实际上成为独立部件,则称轮边减速器。单级式主减速器应用于轿车和一般轻、中型载货汽车。单级主减速器由一对圆锥齿轮组成,具有结构简单、质量小、成本低、使用简单等优点。经方案论证,本设计主减速器采用单级主减速器。其传动比i0一般小于等于7。(3) 主减速器主、从动锥齿轮的支承方案主减速器中心必须保证主从动齿轮具有良好的啮合状况,才能使它们很好地工作。齿轮的正确啮合,除了与齿轮的加工质量装配调整及轴承主减速器壳体的刚度有关以外,还与齿轮的支承刚度密切相关。a) 主动锥齿轮的支承形式主动锥齿轮的支承形式可分为悬臂式支承和跨置式支承两种。查阅资料、文献,经方案论证,采用跨置式支承结构(如图4-2示)。齿轮前、后两端的轴颈均以轴承支承,故又称两端支承式。跨置式支承使支承刚度大为增加,使齿轮在载荷作用下的变形大为减小,约减小到悬臂式支承的130以下而主动锥齿轮后轴承的径向负荷比悬臂式的要减小至1/51/7。齿轮承载能力较悬臂式可提高10%左右。图4-2主动锥齿轮跨置式装载质量为2t以上的汽车主减速器主动齿轮都是采用跨置式支承。本课题所设计的丰田小霸王的装载质量为2.455t,所以选用跨置式。b) 从动锥齿轮的支承从动锥齿轮采用圆锥滚子轴承支承(如图4-3示)。为了增加支承刚度,两轴承的圆锥滚子大端应向内,以减小尺寸c+d。为了使从动锥齿轮背面的差速器壳体处有足够的位置设置加强肋以增强支承稳定性,c+d应不小于从动锥齿轮大端分度圆直径的70%。图4-3从动锥齿轮支撑形式为了使载荷能均匀分配在两轴承上,应是c等于或大于d。(4)主减速器的轴承预紧及齿轮啮合调整支承主减速器齿轮的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。预紧力的大小与安装形式、载荷大小、轴承刚度特性及使用转速有关。4.1.3.2 差速器的结构形式汽车在行使过程中,左右车轮在同一时间内所滚过的路程往往是不相等的,左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行使阻力不等等。这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行使或直线行使,均会引起车轮在路面上的滑移或滑转,一方面会加剧轮胎磨损、功率和燃料消耗,另一方面会使转向沉重,通过性和操纵稳定性变坏。为此,在驱动桥的左右车轮间都装有轮间差速器。差速器是个差速传动机构,用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。差速器按其结构特征可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。 汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应用广泛。它可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器。普通齿轮式差速器的传动机构为齿轮式。齿轮差速器要圆锥齿轮式和圆柱齿轮式两种。强制锁止式差速器就是在对称式锥齿轮差速器上设置差速锁。当一侧驱动轮滑转时,可利用差速锁使差速器不起差速作用。差速锁在军用汽车上应用较广。经方案论证,差速器结构形式选择对称式圆锥行星齿轮差速器。普通的对称式圆锥行星齿轮差速器由差速器左、右壳,2个半轴齿轮,4个行星齿轮(少数汽车采用3个行星齿轮,小型、微型汽车多采用2个行星齿轮),行星齿轮轴(不少装4个行星齿轮的差速器采用十字轴结构),半轴齿轮及行星齿轮垫片等组成。由于其结构简单、工作平稳、制造方便、用在公路汽车上也很可靠等优点,最广泛地用在轿车、客车和各种公路用载货汽车上有些越野汽车也采用了这种结构,但用到越野汽车上需要采取防滑措施。例如加进摩擦元件以增大其内摩擦,提高其锁紧系数;或加装可操纵的、能强制锁住差速器的装置差速锁等。4.1.3.3 驱动车轮传动装置的结构形式驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿轮传给驱动车轮。在断开式驱动桥和转向驱动桥中,驱动车轮的传动装置包括半轴和万向节传动装置且多采用等速万向节。在一般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半轴齿轮与轮毂连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减速器的主动齿轮连接起来。普通非断开式驱动桥的半轴,根据其外端的支承型式或受力状况的不同而分为半浮式、3/4浮式和全浮式三种。a) 半浮式半轴以靠近外端的轴颈直接支承在置于桥壳外端内孔中的轴承上,而端部则以具有锥面的轴颈及键与车轮轮毂相固定,或以突缘直接与车轮轮盘及制动鼓相联接)。因此,半浮式半轴除传递转矩外,还要承受车轮传来的弯矩。由此可见,半浮式半轴承受的载荷复杂,但它具有结构简单、质量小、尺寸紧凑、造价低廉等优点。用于质量较小、使用条件较好、承载负荷也不大的轿车和轻型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咨询服务方案的工作计划
- 鄂州的栈桥施工方案
- 团队活动方案策划奖品
- 息烽公司培训活动策划方案
- 咨询客服优化方案
- 药品执法培训课件
- 建筑山石开挖方案设计
- 班级搞野餐活动方案策划
- 建筑竞标方案设计费
- 税务咨询客户服务方案
- 制药企业GMP生产质量管理培训资料
- 4.1.2+无理数指数幂及其运算性质课件-2025-2026学年高一上学期数学人教A版必修第一册
- (2025秋新版)苏教版三年级数学上册全册教案
- 2025年秋期人教版五年级上册数学全册核心素养教案(教学反思有内容+二次备课版)
- 《清华大学介绍》课件
- 铁路防雷及接地工程技术规范(TB 10180-2016)
- DB32∕T 2975-2016 水运工程建设管理用表
- T∕FSI 084-2022 双酚AF
- K线八低八高技术系统讲解课程(三)
- 铁路技规第十六章资料
- 全国专利代理行业服务收费指导价格(试行)
评论
0/150
提交评论