高考数学名师精讲-专题8:《高考数学填空题的解题策略》ppt精编课件.ppt_第1页
高考数学名师精讲-专题8:《高考数学填空题的解题策略》ppt精编课件.ppt_第2页
高考数学名师精讲-专题8:《高考数学填空题的解题策略》ppt精编课件.ppt_第3页
高考数学名师精讲-专题8:《高考数学填空题的解题策略》ppt精编课件.ppt_第4页
高考数学名师精讲-专题8:《高考数学填空题的解题策略》ppt精编课件.ppt_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

QG 理科 数学 数学 数学 数学 对点集训 题型示例 引言 总结 填空题是将一个数学真命题 写成其中缺少一些语句的不完整形式 要求学生在指定的空位上 将缺少的语句填写清楚 准确 它是一个不完整的陈述句形式 填写的可以是一个词语 数字 符号 数学 引言 题型示例 总结 对点集训 语句等 数学填空题的特点 填空题缺少选择的信息 故解答题的求解思路可以原封不动地移植到填空题上 但填空题既不用说明理由 又无需书写过程 因而解选择题的有关策略 方法有时也适合于填空题 填空题大多能在课本中找到原型和背景 故可以化归为我们熟知的题目或基本题型 填空题不需过程 不设中间分值 更易失分 因而在解答过程中应力求准确无误 填空题虽题小 但跨度大 覆盖面广 形式灵活 可以有目的 和谐地 引言 题型示例 总结 对点集训 结合一些问题 突出训练学生准确 严谨 全面 灵活地运用知识的能力和基本运算能力 突出以图助算 列表分析 精算与估算相结合等计算能力 要想又快又准地答好填空题 除直接推理计算外 还要讲究一些解题策略 尽量避开常规解法 数学填空题的类型 根据填空时所填写的内容形式 可以将填空题分成两种类型 一是定量型 要求考生填写数值 数集或数量关系 如 方程的解 不等式的解集 函数的定义域 值域 最大值或最小值 线段长度 角度大小等等 由于填空题和选择题相比 缺少选择的信息 所以高 引言 题型示例 总结 对点集训 考题中多数是以定量型问题出现 二是定性型 要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质 如 给定二次曲线的焦点坐标 离心率等等 近几年出现了定性型的具有多重选择性的填空题 解数学填空题的原则 解答填空题时 由于不反映过程 只要求结果 故对正确性的要求比解答题更高 更严格 考试说明 中对解答填空题提出的基本要求是 正确 合理 迅速 为此在解填空题时要做到 快 运算要快 力戒小题大做 稳 变形要稳 不可操之过急 全 答案要全 力避残缺不齐 活 解题要活 不要生搬硬套 细 审题要细 不能粗心大意 引言 题型示例 总结 对点集训 方法一 直接求解法 所谓直接法 就是直接从题设条件出发 运用有关概念 性质 定理 法则和公式等知识 通过严密的推理和准确的运算 从而得出正确的结论 直接法是填空题最基本的解法 是解决大多数填空题的解法 引言 题型示例 总结 对点集训 AB是半径为1的圆的直径 M为直径AB上任意一点 过点M作垂直于直径AB的弦 则弦长大于的概率是 解析 过点M作垂直于直径AB的弦对的圆心角大于 此时点M离圆心的距离要小于 则弦长大于 故所求的概率为 答案 引言 题型示例 总结 对点集训 执行如下图所示的程序框图 那么输出S的值是 引言 题型示例 总结 对点集训 解析 S 1 k 1 S k 2 S 2 k 3 S 1 k 4 S k 5 S 2 k 6 观察出规律得 S k 2018 此时跳出程序 答案 引言 题型示例 总结 对点集训 对正整数n 设曲线y xn 1 x 在x 2处的切线与y轴交点的纵坐标为an 则数列 的前n项和的公式是 解析 y nxn 1 n 1 xn 得y x 2 n 2n 1 n 1 2n n 2 2n 1 切点为 2 2n 所以切线方程为y 2n n 2 2n 1 x 2 令x 0 得an n 1 2n 即 2n 利用等比数列的求和公式得 Tn 2n 1 2 答案 2n 1 2 引言 题型示例 总结 对点集训 点评 直接法是解答填空题最常用的方法 直接法适用的范围很广 只要运算正确必能得出正确的答案 提高直接法解填空题的能力 对数学的能力提高大有裨益 否则一味寻求其他方法则会适得其反 方法二 特殊化求解法 当答案是定值且用的特殊值是题意的某种情况时 那么我们用特例求解就能起到很好的效果 特殊化求解就是用特殊值 特殊图形 特殊位置 代替题设普遍条件 得出一般的结论 常用的特例有特殊数值 特殊角 特殊数列 特殊函数 特殊图形 特殊位置等 这种方 法实际上是一种 小题小做 的解题策略 对解答某些填空题有时往往十分奏效 引言 题型示例 总结 对点集训 已知公差不为0的等差数列 an 满足a1 a3 a4成等比数列 Sn为 an 的前n项和 则的值为 解析 不妨设a3 1 a1 1 2d a4 1 d 且d 0 a1 a3 a4成等比数列 a1a4 1 2d 1 d 1 d 答案 引言 题型示例 总结 对点集训 ABC的外接圆的圆心为O 两条边上的高的交点为H m 则实数m 解析 当角B 90 时 三角形ABC为直角三角形 O为AC的中点 AB BC边上的高的交点H与B点重合 m 1 答案 1 引言 题型示例 总结 对点集训 已知G为锐角三角形ABC的外心 AB 6 AC 10 x y 且2x 10y 5 则cos BAC 解析 把三角形ABC特殊化到直角坐标系中 建立如图所示的平面坐标系 引言 题型示例 总结 对点集训 设 BAC 则A 0 0 C 10 0 B 6cos 6sin G为锐角三角形ABC的外心 所以G在线段AC的垂直平分线上 可知G点的横坐标为5 x y x 6cos 6sin y 10 0 6xcos 10y 6xsin 6xcos 10y 5 2x 10y 5 6cos 2 cos cos BAC 答案 引言 题型示例 总结 对点集训 得越简单越好 进行探求 从而清晰 快捷地得到正确的答案 即通过对特殊情况的研究来判断一般规律 对提高速度和准确度有很大的帮助 方法三 数形结合法 数形结合法就是利用图象或数学结果的几何意义 将数的问题 如解方程 解不等式 求最值 求取值范围等 与某些图形结合起来 利用几何直观性 再辅以计算 求出正确答案的方法 这种解法贯穿数形结合思想 每年高考均有很多填空题 也有选择题 解答题 都可以用数形结合思想解决 既简捷又迅速 数形结合法最主要的是利用数和形的结合 找到解决问题的思路 能使思路清晰 能较快较准地解决 点评 正确地选择对象 在题设条件都成立的情况下 用特殊值 取 问题 引言 题型示例 总结 对点集训 已知点P x y 的坐标满足条件那么点P到直线3x 4y 9 0的距离的最小值为 解析 画出P点的可行域 再画出直线3x 4y 9 0 结合可行域可知当P点为x 1与y x的交点 1 1 时 点P到直线3x 4y 9 0的距离最小 此时d 2 答案 2 引言 题型示例 总结 对点集训 不等式x2 2x 4 m对所有x都成立 则实数m的最大值为 解析 构造函数f x x2 2x 4 作出函数y f x 的图象如图 由图象知f x 的最小值为3 m 3 即m的最大值为3 答案 3 引言 题型示例 总结 对点集训 点评 数形结合法在解题时一定要对有关函数图象 方程曲线 几何图形较熟悉 最重要的是通过数形结合找到问题的突破点 方法四 等价转化法 通过 化复杂为简单 化抽象为具体 将问题等价转化成便于解决 的问题或转化为自己熟悉的类型 从而迅速准确地得到结果 引言 题型示例 总结 对点集训 某中学开学后从高一年级的学生中随机抽取80名学生进行家庭情况调查 经过一段时间后再从这个年级随机抽取100名学生进行学情调查 发现有20名同学上次被抽到过 估计这个学校高一年级的学生人数为 解析 设高一年级的学生人数为n 由于每位学生每次被抽到的概率相等 经过一段时间后再从这个年级随机抽取100名学生进行学情调查 发现有20名同学上次被抽到过 与 从高一年级的学生中随机抽取80名学生进行家庭情况调查 所占的比例相同 n 400 答案 400 引言 题型示例 总结 对点集训 若函数f x x3 x2 ax 4在区间 1 1 恰有一个极值点 则实数a的取值范围为 解析 f x 3x2 2x a 开口向上 对称轴为x f x 在 1 上递减 在 1 上递增 函数f x x3 x2 ax 4在区间 1 1 恰有一个极值点 等价于即 1 a 5 答案 1 5 引言 题型示例 总结 对点集训 在正四棱锥O ABCD中 OA BC 2 以O为球心 半径为1作一个球 则该球和正四棱锥相交部分的体积为 解析 容易解得正四棱锥O ABCD的高为1 及球是以正四棱锥O ABCD的顶点O为球心 与底面ABCD相切的球 直接求该球和正四棱 锥相交部分的体积是不好解的 结合正方体的内切球 本题就等价转化为 所求的相交部分的体积为棱长为2的正方体的内切球体积的 V 答案 引言 题型示例 总结 对点集训 点评 等价转化法要求对知识点比较熟练 根据题意转化为其他的知识点 要求在转化过程中不能遗漏某种情况也不能多了某种情况 要完全等价 方法五 整体分析法 在处理某个问题时 常常需要把某一部分作为一个整体来处理 这样 常能把问题化繁为简 引言 题型示例 总结 对点集训 已知函数f x sinxcosx 3 若f lga 4 则f lg 的值等于 解析 f x sinxcosx 3 sin2x tanx 3 把f x 3作为一个整体 则f x 3 sin2x tanx 可知函数f x 3 sin2x tanx为奇函数 f x 3 f x 3 0 f x f x 6 f lga f lg 6 f lg 6 f lga 6 4 2 答案 2 引言 题型示例 总结 对点集训 若将函数f x x 1 5表示为f x a0 a1 1 x a2 1 x 2 a5 1 x 5 其中a0 a1 a2 a5为实数 则a3 解析 把 1 x 作为一个整体 本问题就相当简单 f x x 1 5 2 1 x 5 f x a0 a1 1 x a2 1 x 2 a5 1 x 5 a3 2 2 40 答案 40 引言 题型示例 总结 对点集训 已知椭圆 1 a b 0 直线l与椭圆交于A B两点 M是线段AB的中点 直线AB与直线OM的斜率分别为k m 且km 则b的值为 解析 设A x1 y1 B x2 y2 M x0 y0 则两式相减 得 0 引言 题型示例 总结 对点集训 又x0 y0 k 又 m km b 1 答案 1 点评 整体化处理问题是数学的一种基本方法 能把问题简单化 有利于准确迅速地得出结论 方法六 构造法 根据题设条件与结论的特殊性 构造出一些熟悉的数学模型 并借助于它认识和解决问题 引言 题型示例 总结 对点集训 若实数a b m满足2a 5b m 且 2 则m的值为 解析 本题需要构造出 的形式 在2a 5b m取对数得 logm2 logm5 m 0 又 2 logm20 2 m2 20 m 2 答案 2 引言 题型示例 总结 对点集训 已知 ABC中 A B C对应边分别为a b c O为BC中点 若a 8 b c 10 则OA的最小值为 解析 以O为坐标原点 BC所在直线为x轴建立如图的平面直角坐标系 易知点A在椭圆 1上 由图形知当点A与短轴端点M重合时 OA最小 则OA的最小值为3 答案 3 引言 题型示例 总结 对点集训 已知函数f x ax 1 2a a 0 若f x lnx在 1 上恒成立 则a的取值范围为 解析 构造函数g x f x lnx ax 1 2a lnx 则g x a 当a 时 1 那么x 1时g x 0 那么g x 在x 1时为增函数 则g x min g 1 0 那么g x 0恒成立 则f x lnx在 1 上恒成立时 引言 题型示例 总结 对点集训 当01 若1 x 则g x 0 g x 是减函数 所以此时g x g 1 0 即f x lnx 故f x lnx在 1 上不恒成立 由 的讨论知f x lnx在 1 上恒成立时 a的取值范围是 答案 引言 题型示例 总结 对点集训 点评 构造法在数列 三角与导数等问题中常用到 起到承上启下的作用 方法七 归纳推理法 归纳推理 由某类事物的部分对象具有某类特征 推出该类事物的全部对象都具有这些特征的推理 或有个别事实概括出一般结论的推理 简言之 就是由部分到整体 由个别到一般的推理 引言 题型示例 总结 对点集训 观察下列等式 1 1 解析 观察可知第n个等式的左边有n个数 第一个数为 右边是1减左边的最后一个数 则第n个等式为 n 1 n 答案 n 1 n 引言 题型示例 总结 对点集训 3 5 8 5 7 9 21 7 9 11 13 40 9 11 13 15 17 65 按此规律 第12个等式的右边等于 观察下列等式 1 1 引言 题型示例 总结 对点集训 解析 第n行左边有n个数 且第n行的第一个数为2n 1 公差为2 故第12行的第一个数为23 共12个数 公差为2 则第12个等式的右边等于12 23 12 11 2 408 答案 408 引言 题型示例 总结 对点集训 如图所示的数阵叫 莱布尼兹调和三角形 它们是由整数的倒数组成的 第n行有n个数且两端的数均为 每个数是它下一行左右相邻两数的和 如 则第n n 3 行第3个数字是 引言 题型示例 总结 对点集训 解析 当n 3时 a33 a32 2 a32 当n 4时 a43 a42 a42 当n 5时 a53 a52 a52 第n行 an3 an2 an3 an2 答案 引言 题型示例 总结 对点集训 点评 要会从已给出的几个结论归纳出一般性的结论 要大胆猜想 方法八 分类讨论法 当问题所给的对象不能进行统一研究时 就需要对研究对象按某个标准分类 然后对每一类分别研究得出每一类问题的结论 最后综合各类结果得到整个问题的解答 作为填空题 有时是不可避免地要分类讨论 引言 题型示例 总结 对点集训 已知函数f x 若f 1 f a 2 则a的所有可能值为 解析 因为f 1 e1 1 1 所以f a 1 当a 0时 显然a 1满足 当a 0时 令lg a 1 得 a 10 即a 10满足 答案 1或 10 引言 题型示例 总结 对点集训 在一个袋子中装有分别标注1 2 3 4 5的5个小球 这些小球除标注的数字外完全相同 现从中随机取出2个小球 则取出小球标注的数字之差的绝对值为2或3的概率是 解析 从5个球中随机取出2个小球有10种取法 数字之差的绝对值为2的情况有 1 3 2 4 3 5 三种 数字之差的绝对值为3的情况有 1 4 2 5 两种 故所求概率为P 答案 引言 题型示例 总结 对点集训 在数列 an 中 a1 1 anan 1 2n n N 则数列 an 的通项an 解析 因为anan 1 2n 所以an 1 当n为偶数时 an an 2 n为偶数 当n为偶数时 n 1为奇数 故有an 1 所以an n为奇数 答案 an 引言 题型示例 总结 对点集训 涉及的数学概念是分类的 如对数函数 指数函数的底数 数学问题中含有参变量时 方法九 多选型填空题 多选型填空题是指给出若干个命题或结论 要求从中选出所有满足题意的命题或结论 试题具有结论不唯一 且某些答案有迷惑性 以偏概全 考查概念及考查某种特殊情况等 在解决不成立的问题时常采用举反例的方法 点评 分类讨论要求分类明确 不重复 不遗漏 常见的分类讨论有 引言 题型示例 总结 对点集训 已知命题p x R tanx 2 命题q x R x2 x 1 0 则命题p q是真命题 过点 1 2 且在x轴和y轴上的截距相等的直线方程是x y 1 0 函数f x lnx 2x 1在定义域内有且只有一个零点 先将函数y sin 2x 的图象向左平移个单位 再将新函数的周期扩大为原来的两倍 则所得图象的函数解析式为y sinx 其中正确命题的序号为 把你认为正确的命题序号都填上 给出以下四个命题 引言 题型示例 总结 对点集训 图象的变换等基础知识 中两个命题都是真命题的 所以p q是真命题 是假命题 因直线在两坐标轴上截距相等包括直线经过原点 是真命题 只需在同一坐标系中画出函数y lnx和y 1 2x的图象 两函数图象只有一个交点 即函数f x lnx 2x 1在定义域内有且只有一个零点 是真命题 将函数y sin 2x 的图象向左平移个单位 得y sin 2 x sin2x 再将新函数的周期扩大为原来的两倍 则所得图象的函数解析式为y sin2 sinx 答案 解析 本题综合考查命题 直线方程 函数的零点及三角函数 引言 题型示例 总结 对点集训 直角坐标系中横坐标 纵坐标均为整数的点称为格点 如果函数f x 的图象恰好通过k k N 个格点 则称函数f x 为k阶格点函数 下列函数 f x log0 5x f x x f x 3 x2 6 x 3 2 f x sin4x cos2x 其中是一阶格点函数的有 解析 分析 可以找到 1 0 2 1 等格点 故错误 分析 可以找到 0 1 1 5 等格点 故错误 分析 f x 3 x2 6 x 3 2 3 x 1 2 2 只有一个格点 1 2 引言 题型示例 总结 对点集训 分析 f x sin4x cos2x sin4x sin2x 1 sin2x 2 0 sin2x 1 f x 1 当且仅当sin2x 0或sin2x 1时 f x 1 故f x sin4x cos2x只有一个格点 0 1 答案 点评 多选型填空题相当于多项选择题 这样的题目不论多选还是少选都不能得分 因此对每一项都要认真判断 方法十 新定义型填空题 新定义型填空题是指定义新情景 给出一定容量的新信息 要求考生 引言 题型示例 总结 对点集训 依据新信息进行解题 此类问题多涉及给出新定义的运算 新的背景知识 新的理论体系 要求考生有较强的分析转化能力 引言 题型示例 总结 对点集训 在实数的原有运算法则中 定义新运算a b 3a b 则 x 4 x 2 3x 8的解集为 解析 新运算a b 3a b x 4 x 3x 4 x 4x 4 x 4 x 2 3x 4x 4 2 3x 12x 12 2 3x 15x 14 x 4 x 2 3x 8等价于15x 14 8 x 答案 引言 题型示例 总结 对点集训 对于一个非空集合M 将M的所有元素相乘 所得之积定义为集合M的 积 现已知集合A 30 31 32 33 34 35 则A的所有非空子集的 积 之积为 解析 A集合有六个元素 每个元素用了32次 则A的所有非空子集的 积 之积为 30 31 32 33 34 35 32 3480 答案 3480 引言 题型示例 总结 对点集训 点评 新定义型填空题要求的能力水平较高 要求考生有较强的分析转化能力 要求考生的知识具有系统性 能迁移已有的知识去解决相关的问题 引言 题型示例 总结 对点集训 从考试的角度来看 解填空题只要做对就行 不需要中间过程 正因为不需要中间过程 出错的几率大大增加 我们要避免在做题的过程中产生笔误 这种笔误很难纠错 故在做题时最好在草稿上写出简要的数据运算过程 引言 题型示例 总结 对点集训 在平时训练时要注意以下几点 注意一般方法的训练 强化三基 注意对一些特殊题型结构与解法的总结 并分析出一些规律性的东西 注意对知识的联想 迁移 类比 归纳的应用 提高分析解决问题的能力 注意从不同的角度分析问题 从而比较用不同的方法解决题目的速度与准确度 引言 题型示例 总结 对点集训 1 log2sin log2cos的值为 解析 直接法 log2sin log2cos log2 sin cos log2 sin log2 2 答案 2 引言 题型示例 总结 对点集训 2 已知 a b a b 2 则 2a b 的值为 解析 数形结合法 由 a b a b 2 不妨使a b的起点相同 结合等边三角形 可知a b的夹角为 2a b 2 答案 2 引言 题型示例 总结 对点集训 3 如图 一个空间几何体的正 主 视图 侧 左 视图都是面积为 且一个内角为60 的菱形 俯视图为正方形 那么这个几何体的表面积为 解析 数形结合法 该几何体为两个相同的正四棱锥的组合 正四棱锥的侧面的高为1 底面棱长为1 所以这个几何体的表面积为8 1 1 4 答案 4 引言 题型示例 总结 对点集训 4 在数列 an 中 若a1 1 an 1 2an 3 n 1 则该数列的通项an 解析 构造法 构造数列 bn 使bn an 3 bn 1 2bn b1 a1 3 2 数列 bn 是首项为2 公比为2的等比数列 bn 2n an 3 2n an 2n 3 答案 2n 3 引言 题型示例 总结 对点集训 5 已知函数f x 则f f 10 的值为 解析 直接法 f 10 lg10 1 f f 10 f 1 21 2 答案 引言 题型示例 总结 对点集训 6 学校要安排4名学生在周六 周日参加社会实践活动 每天至少1人 则学生甲被安排在周六的不同排法的种数为 用数字作答 解析 等价转化法 学校要安排4名学生在周六 周日参加社会实践活动 每天至少1人 则学生甲被安排在周六 等价于 除甲以外的其他三人至少有一人被安排在周日 故有23 1 7种排法 答案 7 引言 题型示例 总结 对点集训 7 执行下面某算法的程序框图 则输出的S是 解析 直接法 第一次 S 12 i 11 第二次 S 12 11 132 i 10 引言 题型示例 总结 对点集训 第三次 S 132 10 1320 i 9 故输出S 1320 答案 1320 引言 题型示例 总结 对点集训 8 设a 0 b 0 称为a b的调和平均数 如图 C为线段AB上的点 且AC a CB b O为AB中点 以AB为直径作半圆 过点C作AB的垂线交半圆于D 连结OD AD BD 过点C作OD的垂线 垂足为E 则图中线段OD的长度是a b的算术平均数 线段的长度是a b的几何平均数 线段的长度是a b的调和平均数 解析 新定义型填空题 易知AD BD 又CD AB 则CD2 AC CB ab 那么CD的长度是a b的几何平均数 又CE OD 那么CD2 DE DO 则ab DE 则DE 所以DE的长度是a b的调和平均数 答案 CDDE 引言 题型示例 总结 对点集训 9 已知函数f x x R 给出下列命题 对 x R 等式f x f x 0恒成立 函数f x 的值域为 1 1 若x1 x2 则一定有f x1 f x2 函数g x f x x在R上有三个零点 其中正确命题的序号为 把所有正确命题的序号都填上 解析 多选型填空题 易知f x 为奇函数 故 正确 f x 1 1 f x 1 故 正确 利用单调性的定义可分析f x 为增函数 故 正 引言 题型示例 总结 对点集训 确 令f x x 0 x 0 x 0 函数g x f x x在R上只有一个零点 故 错 答案 引言 题型示例 总结 对点集训 10 f x 是定义在 0 上的增函数 且f f x f y 若f 6 1 f a 2 则a 解析 特殊化求解法 令x 36 y 6 得f 6 f 36 f 6 f 36 2f 6 2 f x 是定义在 0 上的增函数 f a 2 a 36 答案 36 引言 题型示例 总结 对点集训 11 若x y R且x2 y2 2x 则x2 2y2的取值范围是 解析 直接法 x2 y2 2x y2 x2 2x 0 0 x 2 x2 2y2 x2 2 x2 2x 3x2 4x 0 x 2 3 2 4 3x2 4x 3 22 4 2 3x2 4x 4 即x2 2y2的取值范围为 4 答案 4 引言 题型示例 总结 对点集训 12 若实数x y满足如果目标函数z x y的最小值为 1 则实数m 解析 数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论