




免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
以下证明选自某神书Proofs without words及网上图片1.含15角的直角三角形面积公式2.不等式x+1/x2(x1)的五种证明前n个三角形数的和(三角形数T_n=1+2+3+.+n=n(n+1)/2)自认为初中能看懂。 举报|4. 1*2+2*3+3*4+.+(n-1)n的计算公式85.勾股定理的割补法证明0. 勾股定理这个大家小学就学过的古老定理,有着无数传奇故事。我可以很随意的写出她的10个不同的证明方法。而路明思(Elisha Scott Loomis)在 毕达哥拉斯命题( Pythagorean Proposition)提到这个定理的证明方式居然有367种之多,实在让人惊讶。这里给出一个不需要语言的证明方法。实际上勾股定理是余弦定理的一种特殊情况,而余弦定理的证明,同样可以不用语言。1. 关于反正切的恒等式关于反正切,有如下两个很精彩的等式:arctan1/2+arctan1/3=/4acrtan1+arctan2+arctan3=它们的证明方法也同样精彩2. 几何平均值小于算术平均值这是不等式中最重要和基础的等式:它也可以通过图形来证明。注意到ABCDBA ,可以很轻松地得到AB=ab。剩下的就显而易见了。3. 1+3+5+(2n-1)= n 2这是奇数的求和公式,下图是当n=8时的情形4. 平方数的求和公式5. 立方数的求和公式6. 斐波那契数列的恒等式可谓家喻户晓的斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21 这个数列从第三项开始,每一项都等于前两项之和, F n+1 = F n + F n-1 。它的通项公式是有趣的是,这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。而且当n无穷大时 F n-1 / F n 越来越逼近黄金分割数0.618。正因为它的种种神奇性质,美国数学会甚至从1960年代起出版了斐波纳契数列季刊。关于斐波那契数列,有一个恒等式是这样的这个等式很漂亮,不需要借助复杂的数学推导,它有一个很直观的证明方法7. 结果为1/3的一组分子式下面是一组分子式,他们的结果都等于1/3 :8. 最受数学家喜爱的无字证明1989 年的美国数学月刊(American Mathematical Monthly)上有一个貌似非常困难的数学问题:下图是由一个个小三角形组成的正六边形棋盘,现在请你用右边的三种(仅朝向不同的)菱形把整个棋盘全部摆满(图中只摆了其中一部分),证明当你摆满整个棋盘后,你所使用的每种菱形数量一定相同。美国数学月刊提供了一个非常帅的“证明”。把每种菱形涂上一种颜色,整个图形瞬间有了立体感,看上去就成了一个个立方体在墙角堆叠起来的样子。三种菱形分别是从左侧、右侧、上方观察整个立体图形能够看到的面,它们的数目显然应该相等。它把一个纯组合数学问题和立体空间图形结合在了一起,实在让人拍案叫绝。这个问题及其鬼斧神工般的“证明”流传甚广,深受数学家们的喜爱。死理性派曾经讨论过 这个问题 。同时它还是死理性派logo的出处。9. 棋盘上的数学证明在一个88的国际象棋棋盘上,我们可以用32张多米诺骨牌(是两个相连正方形的长方形牌)覆盖整个棋盘上的64个方格。如果将对角线上的两个方格切掉,剩下来的62个格子还能用31张骨牌覆盖住吗?答案是不能的。每一张骨牌在棋盘上必是覆盖住两个相邻方格,一白一黑。所以31张骨牌应该可以盖住31个黑格和31个白格。而这被切了角的棋盘上的方格有32个是一种颜色,另一种颜色是30个,因此是不能被31张骨牌覆盖的。但是如果我们切掉的不是颜色相同的两个呢?假如我们从棋盘的任何部位切掉两个颜色不同的方格,那么剩下来的62格是否一定能被31张骨牌完全盖住?我可以告诉你这是一定能做到的,并且关于这个结论,存在一个非常漂亮的证明。建议读者在继续往下阅读前,可以先自行思考如何证明这个结论。上图就是那个漂亮的证明。不妨对它再赘述两句。粗黑线条将整个棋盘转变为一条首尾相连、黑白格相间的封闭路线。从这棋盘上切掉任何两个颜色不同的方格,会让这个封闭线路变成两段线路(如果切掉的方格是相连的,那就是一条线路)。在这两段(或一段)线路中,两种颜色的格子数量都是偶数,故分别都可以被若干张骨牌覆盖。从而证明整个棋盘可以被31张骨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年专科护士产科护理提升计划
- 电子产品组装工期保证体系及保证措施
- 小学科学教学方法改革计划
- 新版部编版六年级语文下册第四单元教学安排计划
- 心理健康教师岗位职责在留守儿童心理关怀
- 2025年绿色环保汽修厂房租赁合作协议
- 2025二手集装箱翻新与买卖服务合同
- 2025年度版广告制作与发布合同范本
- 2025版企事业单位厕所清洁消毒与设施升级合同
- 2025版汽车抵押贷款担保协议书
- 现代化智能仓储物流中心建设的项目解决的方案课件
- 《真空原理简介》教学课件
- 艾滋病检测筛查实验室申请表
- 文化政策与法规课件
- 社区社群团购新团长培训案例课件
- 外科学教学课件:食管癌
- 露天矿开采技术课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案
- 部编人教版九年级上册初中历史 第1课 古代埃及 教案(教学设计)
- 钢结构钢梁计算(PPT33张)
- 幼儿教师——散文诗
- 创伤骨折院前急救ppt课件(PPT 50页)
评论
0/150
提交评论