普通化学讲稿下册.doc_第1页
普通化学讲稿下册.doc_第2页
普通化学讲稿下册.doc_第3页
普通化学讲稿下册.doc_第4页
普通化学讲稿下册.doc_第5页
免费预览已结束,剩余75页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7. 原子结构和元素周期律原子结构理论的发展过程:100 年前的今天,正是人类揭开原子结构的秘密的非常时期。 我们共同来回顾 19 世纪末到 20 世纪初,科学发展史上的一系列重大的事件。1879 年 英国人 Crookes 发现阴极射线1896 年 法国人 Becquerel 发现铀的放射性1897 年 英国人 thomson 测电子的荷质比 发现电子1898 年 波兰人 Marie Curie 发现钋和镭的放射性1899 年 英国人 Rutherford 发现 , , 射线1900 年 德国人 Planck 提出量子论1905 年 瑞士人 Einstein 提出光子论 解释光电效应 1909 年 美国人 Millikan 用油滴实验测电子的电量1911 年 英国人 Rutherford 进行 粒子散射实验 提出原子的有核模型1913 年 丹麦人 Bohr 提出 Bohr 理论 解释氢原子光谱71 微观粒子运动的特殊性 微观粒子的运动,不能用经典力学(牛顿力学)来描述,因为微观粒子的运动具有它本身的特殊性。要研究微观粒子,首先要了解其运动的特殊性。711物理量变化的不连续性量子化、玻尔氢原子模型由于是微观粒子,所以电荷、质量及光子能量的不连续性不容忽视。玻尔理论(1)稳定轨道, 角动量量子化(2)定态 轨道能量的量子化(3)能量的辐射与吸收 不连续光谱,证明电子运动能量的量子化7.1.2微观粒子的波粒二象性l 微观粒子的波粒二象性人们当年研究光时, 只考虑到光的波动性, 到了麦克斯韦, 波动性已经发展到顶峰。 而Planck提出的光电效应, 指出光具有粒子性, 也为人们所忽略。 通过光的干涉, 衍射及其光电效应实验, 证明光具有波粒二象性。根据: (1)Einstein 的质能联系公式 E = m (2)Planck 量子论(3)Einstein光子的能量公式 E = h得到光具有波粒二象性:其中: P:动量,m:光子质量(粒子性), : 光的频率, : 光的波长(波动性) c :光速, h = 6。626J。s( Planck常数)1924年, 法国年轻的物理学家Louis de Broglie ( 德布罗意), 当年32岁, 根据光的波粒二象性规律, 大胆提出人们在研究微观粒子时, 忽略了粒子的波动性,指出微粒象光一样, 也具有波粒二象性, 并提出德布罗意关系式;等式左边: m, p 是与质量, 动量相关, 说明具备粒子性等式右边: 与相关, 说明具备波动性。(v为粒子的运动速度)电子衍射实验:1927年, 两位美国科学家进行了电子衍射实验, 证实了德布罗意关系式的正确性。l 测不准原理牛顿力学中的经典描述: 已知有一质点, 质量为m, 则有: F = ma (a 为加速度) 根据速度方程: 所以, 可以准确测定质点的速度(动量) 和位置。 对于宏观物体而言, 这一结论无疑是绝对正确的。 而对于微观粒子是怎样的呢? 对于微观粒子, 由于其具有特殊的运动性质(波粒二象性), 不能同时准确测定其位置和动量。 1927年, 海森堡(Heisthberg)提出测不准原理。 如果位置测不准量为x, 动量测不准量为p, 则其数学表达式为: 如何理解测不准原理呢? 通过以下对比例题可以看的很清楚。例 1 原子半径为1012m, 所以核外电子最大测不准量为x = 1.0m, 求速度测不准量v。 已知电子的质量为m = 9.11x10-31Kg。 误差如此之大,容忍不了!对于宏观物体如何?例 2 子弹质量为m =0.01Kg, x = m, v为多少? 解: 按上公式求出: 几乎没有误差, 所以对宏观物质, 测不准原理无意义。既然对微观粒子的运动状态测不准, 有无方法描述其运动状态呢? 答案是肯定的。 某电子的位置虽然测不准, 但可以知道它在某空间附近出现的机会的多少, 即几率的大小可以确定。 因而可以用统计的方法和观点, 考察其运动行为。 这里包括两点: 能量: 量子化 运动: 统计性7。1。3微观粒子运动的统计性规律若通过电子枪一粒粒发射电子, 通过狭缝打到感光屏幕上, 时间较短时, 电子数目少, 每个电子的分布无规律; 而当时间较长时, 电子的数目足够多时, 出现衍射环。衍射环的出现, 表明了电子运动的波动性, 所以波动性是粒子性的统计结果。 实验中明暗交替的衍射环中, 亮的地方, 电子出现的机会大, 暗的地方电子出现机会小。 即这种电子的分布是有规律的。以上介绍的微观粒子的三个特征(波粒二象性,测不准原理,运动规律的统计性)说明,研究微观粒子,不能用经典的牛顿力学理论。而找出微观粒子的空间分布规律,必须借助数学方法, 建立一个数学模式, 找出一个函数, 用这这一函数来研究微观粒子。7.2 单电子原子核外电子运动状态的描述7.2.1 波函数、量子数7.2.1.1 波函数(原子轨道)波函数是核外电子出现区域的函数。1926年,奥地利物理学家薛定谔(Schodinger)提出一个方程, 被命名为: 薛定谔方程一. 薛定谔方程为一个二阶偏微分方程:此方程是函数 = f(x, y, z) 的二阶偏微分方程,用积分方法求解(我们只需要了解方程的形式和一些特殊的解即可,至于解的过程,在学习物质结构课程时会涉及到,在此不介绍)。式中:m: 微粒的质量(这些微粒包括电子,原子,分子等) E :能量 V:势能 :波函数。一般情况下:已知粒子质量m, 势能V = - (), 则可求解出和E。在波函数(或称为波动方程)中,涉及到三个变量:x, y, z, 为方便求解, 将波函数方程进行变换, 将直角坐标x,y,z 变换成球坐标r, 即为:将以上关系代入(1)式中, 经过计算整理, 得到:(2)式即为波函数在球坐标下的方程。经过分离变量, 将 (r,) 表示成积的形式:下面直接给出一些解的形式:从以上三个式子中可见, 波函数被分为两项, 即为径向部分R和角度部分Y 。在此, 并不要求我们去解薛定谔方程, 只要了解薛定谔方程的形式以及其特殊的解即可。 波函数的下标1, 0, 0; 2, 0, 0; 2, 1, 0 所对应的1s, 2s, 2pz是什么? 意义如何?7。2。1。2四个量子数描述电子的运动状态波函数的下标1, 0, 0; 2, 0, 0;2, 1, 0 所对应的是n, l, m, 称为量子数。l 主量子数 n意义:表示原子的大小, 核外电子离核的远近和电子能量的高低。 取值: 1, 2, 3, 4, 。 n, 为正整数(自然数), 与电子层相对应。光谱符号: K, L, M, N对于单电子体系, n 决定了电子的能量。 n 的数值大, 电子距离原子核远, 则具有较高的能量。 同时, n大, 决定r比较大, 即原子比较大。对于单电子体系, H 或 , 可见, 远离原子核的电子的能量为零l 角量子数 l意义: 决定了原子轨道的形状。 取值: 受主量子数n的限制, 对于确定的n, l可为: 0, 1, 2, 3, 4, 。 (n-1), 为n个取值 光谱符号: s, p, d, f, 如:n = 3, 表示 角量子数可取: l = 0, 1, 2 原子轨道的形状取决于l:n = 4, l = 0 : 表示轨道为第四层的4s轨道, 形状为球形l = 1 : 表示轨道为第四层的4p轨道, 形状为哑铃形l = 2 : 表示轨道为第四层的4d轨道, 形状为花瓣形l = 3 : 表示轨道为第四层的4f轨道, 形状复杂由此可知:在第四层上, 共有4种形状的轨道。而同层中(n相同), 不同的轨道称为亚层, 也叫电子轨道分层。所以 l 的取值决定了亚层的多少。 电子绕核运动时, 不仅具有能量,而且具有角动量,而且角动量也是量子化的。角动量, 是矢量,是转动的动量。其绝对值是量子化的:与平动量相比:平动: P = mv, (KJ.), 速度v相同时, 质量m大的,动量P大。转动: M = JW, J 为转动惯量(同质量m相关), W为转动角速度。在多电子原子中, 电子的能量不仅取决于n, 而且取决于l。 亦即多电子原子中电子的能量由 n 和 l 共同决定。单电子原子:多电子原子:为屏蔽系数, 其值的大小与 l 的取值相关 l 磁量子数mm 取值受 l 的影响, 对于给定的 l , m 可取:个值。例如: l = 3, 则 共7个值。 意义: 对于形状一定的轨道( l 相同电子轨道), m 决定其空间取向。 例如: l = 1, 有三种空间取向 (能量相同, 三重简并)。 简并轨道: 能量相同的原子轨道,称为简并轨道,例如:l = 1, p 轨道, m取值为3个, p 轨道为三重简并 l = 2, d 轨道, m 取值为5个, d 轨道为五重简并所以, m 只决定原子轨道的空间取向, 不影响轨道的能量。 因 n 和 l 一定, 轨道的能量则为一定, 空间取向(伸展方向)不影响能量。磁量子数 m 的取值: 为轨道角动量在 z 轴上的分量, 而且有:Mz = m(h/2) 可见, m 的取值有限, 所以角动量在 z 轴上的分量也是量子化的。 如何体现分量的量子化?假如: 知道了矢量的模|M|和矢量方向, 以及其与 z 轴之间的夹角, 则可求得矢量在 z 轴上的分量。n,l,m 表明了:(1)轨道的大小(电子层的数目, 电子距离核的远近), 轨道能量高低; (2)轨道的形状;(3)轨道在空间分布的方向。因而, 利用三个量子数即可将一个原子轨道描述出来。例题1。 推算 n = 3 的原子轨道数目, 并分别用三个量子数 n, l, m 加以描述。l 自旋量子数 ms地球有自转和公转,电子围绕核运动,相当于公转, 电子本身的自转,可视为自旋。 因为电子有自旋, 所以电子具有自旋角动量, 而自旋角动量在 z 轴上的分量, 可用 Ms 表示, 而且:Ms = ms (h/2) Ms的取值: 只有两个 , +1/2和-1/2。 (电子只有两种自旋方式) 所以 Ms 也是量子化的。 通常用“”和“”表示。 所以, 描述一个电子的运动状态, 要用四个量子数: n, l, m 和 Ms。例题2。 用四个量子数描述 n = 4, l = 1 的所有电子的运动状态。分析: 一个轨道只能容纳两个自旋相反的电子, 用n, l, m 可将轨道数目确定下来, 则可将每个电子的运动状态确定下来。解: 对于确定的l = 1, 对应的有 m = -1, 0, +1 有三条轨道, 每条轨道容纳两个自旋方向相反的电子, 所以有 3X2 = 6 个电子的运动状态分别为:通过本例得到结论:在同一原子中, 没有运动状态完全相同的两个电子同时存在!在此, 要牢记四个量子数之间的关系:7.2.2 核外电子的几率密度分布和几率分布,电子云和径向分布图(x,y,z) 属于四维空间, 3个变量 + 1个函数, 无法用立体图形画出来, 所以只好从不同的片面去认识这一问题, 把波函数分为径向部分和角度部分, 分别来讨论。7.2.2.1 核外电子几率密度分布和电子云几率: 电子在某一区域出现的机会叫几率。 与电子出现的区域(体积)有关, 即与所在研究区域, 单位体积内出现的机会有关。几率密度: 电子在单位体积出现的几率。(在空间某点几率的大小)。 几率与几率密度二者之间的关系如何?几率与几率密度之间的关系:几率 = 几率密度 X 体积, 且几率密度 = , 则有: w = X V 可用积分法求得。 - r 变化图:电子云图假想将核外一个电子每个瞬间的运动状态, 用照相的方法摄影, 并将这样数百万张照片重叠, 得到如下的统计效果图, 形象地称为电子云图。电子云:是几率密度 的形象化, 是的空间图形。 原子轨道:是波函数,或波函数 的线性组合(波函数的加减)。角度分布函数:前面得到 2Pz 的波函数:其中径向波函数:而角度波函数: 则角度部分的几率密度为: 如下方式进行计算, 得到 对应Y(,) 和 的数据:则 (Pz)的图形为: 和 Y 绕 z 轴旋转180度, 即可得到三维立体图形按同样的方法, 可以绘制其它轨道的角度分布函数的图形:注意: a。 S 轨道的 与 Y 的图形相同, 以1S为例, 因其波函数为: 只有径向部分, 角度部分波函数为1, 无论角度如何变化, 其值不变。 b。 其它轨道的 比 Y 的图形“瘦”, 比较苗条。 因为三角函数的Sin 和 Cos 的取值小于等于1, 平方后的值必然更小。c。 无正负, 而 Y有正负。 这种正负只是Y计算中取值的正负(在成键中代表轨道的对称性, 不是电荷的正负) 7.2.2.2核外电子几率分布和径向分布图首先, 看波函数 与r 之间的变化关系, 亦即R(r) - r之间的关系, 看几率密度随半径如何变化。考察单位厚度球壳内电子出现的几率: 即在半径r 的球壳内电子出现的几率。令: D(r) =D(r)即为径向分布函数。 用D(r) 对 r 作图, 考察单位球壳内的几率 D(r)随r的变化: 注意: 离中心近的几率大, 但半径小; 离中心远的几率小, 但半径大, 所以径向函数不是单调的(即不单调上升或单调下降, 有极限值) 7.3多电子原子的结构7.3.1多电子原子轨道能级对于单电子, 其能量为: 单位eV。即单电子体系, 轨道(或轨道上的电子)的能量, 由主量子数 n 决定。对于多电子体系: 其中 Z* = Z-, Z为核电荷数, 为屏蔽常数, Z* 为有效核电荷数(1) 屏蔽效应对轨道能级的影响屏蔽效应:在原子中, 其它电子对某电子的遮挡作用。换个角度考虑: 将研究电子之外的原子其余部分, 均视为原子核, 则将复杂的多原子体系简化为单电子体系:Z* 为有效核电荷, 且 Z* = Z -说明: 相当于内层电子抵消或中和掉部分正电荷, 使被讨论的电子受核的吸引下降, 离核更远, 能量更高, 即为内层电子对外层电子的屏蔽作用。 屏蔽效应越大, 受屏蔽的电子的能量越高, 是电子远离核的作用。不同电子所受的屏蔽作用不同。 其大小与角量子数 l 有关:大的电子, 受屏蔽大, 能量高;l 小的电子, 受屏蔽小, 能量升高的幅度小。对于运动状态不同的电子, 或 n 相同, l不同的原子轨道, 有:l 斯蕾特(Slater) 规则屏蔽常数的估计采用定量计算, 解决能级交错的问题。前面讲到,仿照单电子体系的能量公式来处理多电子体系:关键在于如何确定屏蔽系数值。 按以下方式处理。先将轨道分组: (1s) (2s2p) (3s3p) (3d) (4s4p) (4d) (4f), 并规定:1) 外层组电子对内层组的电子无屏蔽, 如果被讨论电子在(2s2p)组, 则(3s3p)以上各组的电子对其屏蔽系数 =0 (右对左无屏蔽)2) 同组内电子: =0.35 (1s)组的两个电子的相互屏蔽系数为 =0.30 3) 讨论(nsnp)组上的电子时, (n-1)层上的每个电子的 =0.85, (n-2)层上以内的每个电子的 =1.004) 讨论(nd)或(nf)上的电子, 所有左侧电子的 =1.00将各个值与相应电子数目乘积的和, 即为公式中的总, 然后求出Z*, 利用公式计算出电子所在轨道的能量。例题1: 比较钾 K(原子序数19, 即Z=19)最后一个电子填充在3d 轨道和 4s 轨道上的能量。思路: 分别按两种填充方式, 求出, 推出Z*, 按公式求出能量即可。26号Fe的 E4s和 E3d的关系怎样? 因为Z 21, 必然E4s E3d。例题2: 已知21号元素钪Sc的电子结构为, 比较3d 轨道和 4s 轨道上的能量。问题: 既然E4s E3d , 为何最后三个电子先填满4s而不先填入3d?解答: 这尚是一个有争议的问题, 即使采用薛定谔方程计算, 对于多电子体系, 也是一个难于解决的问题。 关于3d 和4s 轨道能量的高低, 采用的近似方法不同, 处理问题的角度不同, 得到的结论也不同。 关于第四周期开头的元素 K, Ca, Sc, Ti 的最后几个电子的填充, 由体系的总能量的降低程度决定, 而且, 原子的总能量不仅仅取决于某个原子轨道的能量, 尚有其它能量形式存在。 先填充哪个轨道也取决于是否使体系更加稳定。普遍认为:1) 填充电子时, 为离子状态, Z*比原子状态的大, 体系不同。( 例题1说明, 最后的一个电子填在4s上)2) 先在4s上填充电子, 比先填入3d稳定, 因为4s的钻穿能力比3d大, 使电子更加靠近核, 整个体系能量降低幅度大。 Slater规则的不足之处: (nsnp)同组, 无法区分它们能量的高低。Pauling 近似能级图不足之处:无法反映轨道能量随与原子序数增加而下降的规律。二者相辅相成, 各得益彰(2) 钻穿效应(钻透效应)对轨道能级的影响意义: 电子钻入内部, 靠近核的作用(使自身能量下降) 可以从径向分布函数图加以解释:可以看出: l 大的,钻穿效应小, 远离核, 能量升高。l 大的, 屏蔽效应大, 远离核, 能量升高。相反: l 小的,钻穿效应大, 靠近核, 能量下降。l小的, 屏蔽效应小, 靠近核, 能量下降。亦即: n 相同, l小的电子, 在离核近处, 有小的几率峰出现, 相当于电子靠近核, 受核作用强, 同时回避了内层电子的屏蔽作用, 自身能量下降。 这种效应称为钻穿效应。可以用钻穿效应解释能级分裂, 即同一能级组(n 相同), l 大的电子能量高, l 小的电子可以钻入内部, 自身能量降低, 产生能级分裂。总之, 屏蔽效应使电子的能量上升, 钻穿效应使电子能量下降。对于多电子原子体系, 能量高低由什么因素决定?由 n 和 l 同时决定: a) l 相同, n 大的能量高, 即 E2s E3s E4s, 因为依次受屏蔽作用增大, Z* 依次下降, 所以能量依次升高。b) n 相同, l 大的能量高, E3s E3p E4s 此种现象在 21 号元素 Sc 的左右发生, 称为能级交错(外层轨道的能量反而比内层轨道能量低的现象) 可用径向分布图解释:(3)原子轨道近似能级图美国著名结构化学家 Pauling(鲍林), 经过计算, 将能量相近的原子轨道组合, 形成能级组。 按这种方法, 他将整个原子轨道划分成 7个能级组:第一组 第二组第三组 第四组 第五组 第六组 第七组1s; 2s 2p; 3s 3p; 4s 3d 4p; 5s 4d 5p; 6s 4f 5d 6p; 7s 5f 6d 7p特点: (1)能级能量由低到高。 (2)组与组之间的能量差大, 同组内各轨道之间能量差小。 且 n 逐渐增大, 这两种能量差随能级组的增大逐渐变小。 (3)第一能级组, 只有1s一个轨道, 其余均为两个以上, 且以ns 开始, 以np结束。 (4)能级组与元素的周期相对应。7。3。2 基态原子核外电子排布(1) 排布原则l 能量最低原理 电子由能量低的轨道向能量高的轨道排布(电子先填充能量低的轨道,后填充能量高的轨道。l Pauli(保利)不相容原理 每个原子轨道中只能容纳两个自旋方向相反的电子(即同一原子中没有运动状态完全相同的电子,亦即无四个量子数完全相同的电子)。l Hunt(洪特)规则 电子在能量简并的轨道中, 要分占各轨道,且保持自旋方向相同。 保持高对称性, 以获得稳定。 包括: 轨道全空, 半充满,全充满三种分布。 (2) 核外电子的排布如此, 可根据 Pauling 原子轨道能级图和电子填充三原则, 将原子或离子的电子结构式书写出来。 但在书写电子结构式时, 要注意:1) 电子填充是按近似能级图自能量低向能量高的轨道排布的, 但书写电子结构式时, 要把同一主层(n相同)的轨道写在一起, 如:即不能将相同主层的电子轨道分开书写, 且保证 n 最大的轨道在最右侧。2) 原子实表示电子排布时, 内层已经达到稀有(惰性)气体原子的结构。 如: 3) 特殊的电子结构要记忆。 主要是10个过渡元素: 正常填充: 先填充 ns, 达到ns2之后, 再填 (n-1)d; 特殊的: 先填 ns, 只填一个电子成, 未达到, 就开始填这种现象在 (n-1)d 轨道处于半充满, 全充满左右发生。 7.4 原子结构与元素周期律7。4。1 周期表的结构l 周期周期数 = 能级组数, 所以共有7个周期Cr 的电子结构为: 判断Cr所在的周期数?由于最后一个电子填在最高的能级组 n = 4 的4s轨道上, 所以, Cr 必然为第四周期的元素。l 元素的族主族:s 区 + p 区, (ns+np)的电子数 = 族数, (ns+np)的电子数 = 8, 则为 0族元素。副族:d 区: (n-1)d + ns的电子数 = 族数; (n-1)d + ns的电子数8, 则为VIII族元素。 ds 区:全充满, ns中的电子数 = 族数, 如: 中一个电子, 为 IB 族元素。 f 区:内过渡元素, , 镧系:La-Lu, 锕系:Ar-lrl 元素的分区1) s 区: , 最后的电子填在ns上, 包括 IA IIA , 属于活泼金属, 为碱金属和碱土金属;2) p区:, 最后的电子填在np上, 包括 IIIA-VIIA以及 0 族元素, 为非金属和少数金属;3) d区: , 最后的电子填在(n-1)d上, 包括 IIIB-VIIB以及VIII族元素, 为过渡金属;4) ds区: , (n-1)d全充满, 最后的电子填在ns上, 包括 IB-IIB, 过渡金属(d和ds区金属合起来,为过渡金属);5) f区: , 包括镧系和锕系元素, 称为内过渡元素或内过渡系。镧系: 57-74号元素(La-Lu);La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu镧, 铈, 镨, 钕, 钷, 钐, 铕, 钆, 铽, 镝, 钬, 铒, 铥, 镱, 镥锕系: 89-103号元素(Ar-Lr), 均为放射性元素。 包括:Ar, Th, Pa, U , Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr锕, 钍, 镤, 铀, 镎, 钚, 镅, 锔, 锫, 锎, 锿, 镄, 钔, 锘, 铹除钍为外, 其余均为 和 。7.4.2影响元素基本性质的结构因素7.4.2.1 外层电子构型7.4.2.2 原子半径1. 概念1) 共价半径: 同种元素的两个原子, 以两个电子用共价单键相连时, 核间距的一半, 为共价半径。 如: H2 X2 等同核单键双原子分子, 均可测得其共价半径。 2) 金属半径: 金属晶体中, 金属原子被看为刚性球体, 彼此相切, 其核间距的一半, 为金属半径。 。3) 范德华半径: 单原子分子(He, Ne等), 原子间靠范德华力, 即分子间作用力结合(未成键), 在低温高压下形成晶体, 核间距的一半为范德华半径。2. 原子半径在周期表中的变化规律1)同周期中, 从左向右, 分两个方面看: Z 增大,对电子吸引力增大, r 减小, Z 增大,电子增加,之间排斥力增大,r 增大。这是一对矛盾, 以哪方面为主? 以 为主。 只有当时,对称性较高的半充满和全充满时, 占主导地位。短周期: 从Na Cl, 7个元素,r下降了55 pm, 相邻元素之间,平均下降值为 55/6 = 9。16pm。 (Ar 为范德华半径, 所以比较大)长周期:从Sc Ni, 8个元素,r下降了29 pm, 相邻元素之间,平均下降值为 29/7 = 4。14pm。 (Cu, Zn, Ga 为 结构,对外层电子斥力大, 对核的屏蔽作用强,所以r 不但没减小,反而有所增加。同样, Kr 为范德华半径, 所以比较大)。短周期:电子填加到外层轨道, 对核的正电荷中和少, Z* 增加的幅度大, 所以 r 变小的幅度大。 长周期:e 填加到(n-1)层轨道, 对核的正电荷中和多, Z* 增加的幅度小, 所以 r 变小的幅度小。 超长周期:内过渡系, 镧系和锕系15种元素, r共减小 11 pm, 电子填到内层 (n-2)f 轨道, 屏蔽系数更大, Z* 增加的幅度更小, 所以, r 减小的幅度更小, 或 r 收缩的幅度很小。此种半径收缩很小的现象, 称为镧系收缩。镧系收缩的结果: 由于镧系收缩, 不仅使 15 种镧系元素的半径相似, 性质相近, 分离困难; 而且更主要的是: 使得第二、第三过渡系的同族元素半径相近, 性质相近, 分离困难。2) 同族中半径变化, 自上而下: Z 增大,对电子吸引力增大, r 减小, e 增多,电子层增加, r 增大。这是一对矛盾, 以哪方面为主? 以 为主7.4.3 元素重要性质的周期性变化7.4.3.1 元素的电离能1. 基本概念 1电子伏特的能量为: 一个电子(电量 = 1.602x10-19库仑), 通过电压为 1 伏特的电场的电能:W = 1.602 库仑 x 1 伏特 = 1.602焦耳,则反应中电离出1mol 电子的能量为: E = 1.602x13.6x6.02 = 1312 (KJ/mol)电离能的定义: 某元素 1mol 基态气态原子, 失去最高能级的 1mol电子, 形成 1mol 气态离子(M+) 所吸收的能量, 叫这种元素的第一电离能 (I1); 1mol 气态离子(M+) 继续失去最高能级的 1 mol 电子, 则为第二电离能(I2); , 。I3, I4。In 。 2. 电离能的周期性变化1)同周期中, 从左向右, Z 增大,r减小, 核对电子的吸引增强, 愈来愈不易失去电子, 所以 I 增大。 短周期: 主族元素B 硼: 电子结构为: He, 失去 的一个电子, 达到 全充满的稳定结构, 所以, I1 比较小。N 氮:电子结构为: He, 为半充满结构, 比较稳定, 不易失去其上的电子, I1 突然增大。O 氧:电子结构为: He, 失去的一个电子, 即可达到半充满稳定结构, 所以 I1 有所降低。(反而小于氮的第一电离能)Ne 氖:电子结构为: He, 为全充满结构, 不易失去电子, 所以 I1 在同族中最大。长周期: 副族其中 V钒: 反常。 因电子结构为Ar, 无法解释。Cr铬: I1变小。 因电子结构为Ar, 容易失去的电子达到的稳定结构。 另一方面, 半充满结构, 对核屏蔽大, 使Z*减小, r增大, 核对 的作用小, 也容易失去, 所以电离能变小。Co 和 Ni: 因为电子结构分别为Ar和Ar, 反常。Zn: 因电子结构为Ar, d 和 s 为全充满, 不易失去电子。 所以 I1比较大。可以看出, Zn 的电离能比Cu 的大, 而实际上, Zn 比 Cu 活泼, 证明不能只用电离能来判断反应活性。 实际要从得失电子能力两方面综合考虑。总趋势上看, 长周期的电离能随Z 的增加而增加, 但有反常。从同周期电离能 I 增加幅度来看, 主族元素 副族元素。因为: 主族元素的半径减小幅度大, 即Z*增加幅度大, 对外层电子的引力增加幅度大, 所以 I 的增加幅度也大。副族元素的半径减小幅度小, 即Z*增加幅度小, 对外层电子的引力增加幅度小, 所以 I 的增加幅度也小。 有时有反常现象。内过渡系的规律性更差。3。电离能与价态之间的关系首先, 要明确:失去电子后, Z*增加, r减小, 核对电子引力大, 更不易失去电子, 所以有: I1 I2 I3 I4。, 即电离能逐级加大。Li: I2/I1 = 14.02倍, 增大14倍, 不易生成+2价离子, 所以Li+ 容易形成Be: I2/I1 = 1.95倍, I3/I2 = 8.45倍, 所以Be2+容易形成。B: I3/I2 = 1.38倍, I4/I3 = 6.83倍, 所以B(III)容易形成。C: I4/I3 = 1.35倍, I5/I4 = 6.08倍, 所以C(VI)容易形成。N: I4/I3 = 1.26倍, I6/I5 = 5.67倍, 所以N(V)容易形成。从电子结构来考虑, 一般均达到稳定结构。7.4.3.2 电子亲合能 E1. 概念1mol 某元素的基态气态原子, 得到 1mol 电子, 形成气态离子时所放出的能量, 叫该元素的电子亲合能。 同样有E1, E2, E3, E4, 。等。例如:2. 第一电子亲合能在周期表中的变化同周期中, 核电荷 Z 大, 原子半径 r 小, 核对电子引力大, 结合电子后释放的能量大, 则电离能 E 大。 (测得的数据不全, 有些是计算出来的)。左向右,电子亲合能 E 增大,其中氮原子 N 的(-58)是计算值, 但为何为负值?因为 N 的电子结构为 He, 2p轨道半充满, 比较稳定, 不易得电子, 如果得到电子, 非但不释放能量, 反而要吸收能量, 所以E为负值。F元素反常的原因: 因为半径比较小, 电子云密度大, 排斥外来电子, 不易与之结合, 所以E反而比较小。 出于同种原因, O元素比同族的S元素和Se元素的电子亲合能小。既然 F 的电子亲合能比 Cl 的电子亲合能小, 为何F2 反而比Cl2活泼呢?(容易得电子, 氧化能力强)注意: 这是分子活泼性的比较, 而不是原子活泼性的比较。 首先看键能:再看电子亲合能:所以:综合考虑: H5 H6, , 即氟的反应比氯的相应反应释放的能量大, 所以, F2比Cl2更容易得到电子。7.4.3.3 电负性电离能 I: 表示元素原子形成正离子的能力大小;电子亲合能 E: 表示元素原子形成负离子的能力大小;而在许多反应中, 并非单纯的电子得失, 要综合考虑。1932年, Pauling 提出了电负性的概念: 电负性: 表示一个元素的原子在分子中吸引电子的能力。 规定: 氟原子的电负性约为 4。0, 其它原子与氟相比, 得出相应数据。一般情况下: 金属 X 2.0(此分界为经验判断,不是绝对的!)周期表中: 右上角 F 的电负性最大, 左下角 Cs 的电负性最小电负性计算: 1934年 Milliken(密立根)提出: X= 1/2(I + E) (电负性为电离能与电子亲合能之和的一半) 如此, 可计算出绝对的电负性数值。 但由于E 的数据不足, 此式在应用中有局限性。 1957年, Allred-Rochow(阿莱-罗周), 将有效核电荷Z*引入, 提出: 核对电子的引力为:式中引入两个常数; 计算结果与Pauling数据相吻合电负性比较:Xcu = 1。9, Zn = 1。65, 所以Cu比Zn不易失去电子, 即Cu的金属性更强。 此为电离能和电子亲合能的综合结果。8. 化学键与分子结构原子之间是靠什么力结合一起形成分子呢?这个力叫化学健。也就是说人们把分子或晶体中直接相邻的原子之间强烈的相互作用力,称为化学健。化学健的主要类型有离子键、共价键和金属健。8.1 离子键与离子晶体 1916 年德国科学家Kossel(科塞尔)提出离子键理论。8.1.1离子键的形成1. 形成过程 以 NaCl 为例:1) 电子转移形成离子 分别达到 Ne 和 Ar 的稀有气体原子的结构,形成稳定离子。2)靠静电吸引, 形成化学键 体系的势能与核间距之间的关系如图所示:横坐标: 核间距r。 纵坐标: 体系的势能 V。 纵坐标的零点: 当 r 无穷大时, 即两核之间无限远时, 势能为零。 下面来考察 Na+ 和 Cl- 彼此接近时, 势能V的变化:图中可见:r r0 时,当 r 减小时, 正负离子靠静电相互吸引, V减小, 体系稳定。r = r0 时, V有极小值, 此时体系最稳定。 表明形成了离子键。r 1。7, 发生电子转移, 形成离子键;X 1。7, 实际上是指离子键的成分(百分数)大于50%。2)易形成稳定离子Na+ , Cl- , 达到稀有气体稳定结构。Ag+ d轨道全充满的稳定结构。而: C和Si 原子的电子结构为, 要失去全部的4e, 才能形成稳定离子, 比较困难。 所以一般不形成离子键。如 CCl4, SiF4 等, 均为共价化合物。3)形成离子键, 释放能量大 在形成离子键时, 以放热的形式, 释放较大的能量。8.1.2 离子键的特征1. 作用力的实质是静电引力 2. 离子键无方向性, 无饱和性因为是静电吸引, 所以无方向性; 且只要是正负离子之间, 则彼此吸引, 即无饱和性。8.1.3 离子键的强度1. 键能和晶格能 以 NaCl 为例:键能:1mol 气态 NaCl 分子, 离解成气体原子时, 所吸收的能量。 用Ei 表示: 晶格能:气态的正负离子, 结合成 1mol NaCl 晶体时, 放出的能量。 用 U 表示:晶格能 U 越大, 则形成离子键时放出的能量越多, 离子键越强。键能和晶格能, 均能表示离子键的强度, 而且大小关系一致。 通常, 晶格能比较常用。 如何求得晶格能?2. 玻恩-哈伯循环 ( Born-Haber Circulation) Born 和 Haber 设计了一个热力学循环过程, 从已知的热力学数据出发, 计算晶格能。 具体如下: 利用盖斯定律, 通过热力学也可以计算 NaCl 的离子键的键能。 H1 :Na的第一电离能I1, H2 :Cl的电子亲合能 E 的相反数: -EH3 :NaCl的晶格能 U 的相反数 -U H4 :NaCl的升华热 S而 H5 = - Ei, 所以通过 I1, E, U 和S 可求出键能 Ei。8.1.4 离子的特征及对离子化合物性质的影响从离子键的实质是静电引力 出发, 影响 F 大小的因素有: 离子的电荷数q 和离子之间的距离 r (与离子半径的大小相关)1) 离子电荷数2) 离子半径的影响半径大, 导致离子间距大, 所以 作用力小; 相反, 半径小, 则作用力大。 3) 离子半径概念将离子晶体中的离子看成是相切的球体, 正负离子的核间距 d 是r+ 和r- 之和:1926年, 哥德希密特(Goldschmidt)用光学方法测定, 得到了F-和的半径, 分别为133pm 和132pm,结合X射线衍射数据, 得到一系列离子半径:这种半径为哥德希密特半径。1927年, Pauling 用最外层电子到核的距离, 定义为离子半径, 并利用有效核电荷等关系, 求出一套离子半径数据, 称为 Pauling 半径。教材上两套数据均列出。 一般在比较半径大小和讨论规律变化时, 多采用Pauling 半径。4) 离子半径的变化规律a) 同主族, 从上到下, 电子层增加, 具有相同电荷数的离子半径增加。 b) 同周期: 主族元素, 从左至右 离子电荷数升高, 最高价离子, 半径最小。 如: 过渡元素, 离子半径变化规律不明显。c) 同一元素, 不同价态的离子, 电荷高的半径小。 如: d) 一般负离子半径较大; 正离子半径较小。e) 周期表对角线上, 左上元素和右下元素的离子半径相似。 如: Li+ 和 Mg2+, Sc3+ 和 Zr4+ 的半径相似。8.1.5 离子晶体的特点1. 无确定的分子量: NaCl 晶体是个大分子, 无单独的NaCl分子存在于分子中。 NaCl是化学式, 因而 58。5 是式量, 不是分子量。2. 导电性: 水溶液或熔融态导电, 是通过离子的定向迁移导电, 而不是通过电子流动而导电。 3. 熔点沸点较高: 4. 硬度高, 延展性差: 因离子键强度大,所以硬度高。 如果发生位错: 发生错位, 正正离子相切, 负负离子相切, 彼此排斥, 离子键失去作用, 故无延展性。 如CaCO3可用于雕刻, 而不可用于锻造, 即不具有延展性。8.1.6离子晶体的空间结构1. 对称性1) 旋转和对称轴 n重轴, 360度旋转, 可以重复n次: 2) 反映和对称面晶体中可以找到对称面: 3) 反演和对称中心晶体中可以找到对称中心。2. 晶胞晶胞是晶体的代表, 是晶体中的最小单位, 晶胞并置起来, 则得到晶体。 晶胞的代表性体现在以下两个方面: 一是代表晶体的化学组成; 二是代表晶体的对称性(即具有相同的对称元素: 对称轴, 对称面和对称中心)。 晶胞是晶体中具有上述代表性的体积最小, 直角最多的平行六面体。 3. 立方晶系 AB型离子晶体的空间结构晶胞的平行六面体是正六面体时, 我们称它属于立方晶系, 用来表示平行六面体的三度的三个轴, 称为晶轴, 三个晶轴的长度分别用a, b, c表示, 三个晶轴之间的夹角分别用, , 表示。 我们讨论的AB型晶体指正负离子数目相同, 包括NaCl, CsCl, ZnS。讨论立方晶系AB型晶体, 首先看NaCl的晶胞:组成具有代表性, 对称性(轴, 面, 中心)也与晶体相同, 所以乙为NaCl的晶胞组成和对称性均有代表性。 看空心圆点, 除了立方体的顶点的8个, 无其它, 称为简单立方晶胞。 配位数为8组成和对称性均有代表性。 看空心圆点,除了立方体的顶点的8个, 面中心6个, 也为面心立方。 配位数为4总之, 立方晶系有 3 种类型晶胞, 面心立方, 简单立方, 体心立方。四方晶系 , 2 种, 正交晶系, 4 种等, 共有14种类型的晶胞。4。 配位数与 r+/r- 的关系NaCl 六配体, CsCl八配体, ZnS 四配体, 均为AB型晶体, 为何配位数不同?1) 离子晶体稳定存在的条件 2) r+/r-与配位数从六配位的介稳状态出发, 进行半径比与配位数之间关系的探讨。 此时, 为介稳状态。 如果r+ 再大些, 则出现上述 b) 种情况, 即阴离子同号相离, 异号相切的稳定状态。 亦即:当 r+ 继续增加, 达到并超过: 时, 即阳离子离子周围可容纳更多阴离子, 为8配位, CsCl型。若r+ 变小, 即:, 则出现 a)种情况, 阴离子相切, 阴离子阳离子相离的不稳定状态。 配位数减少, 4配位, ZnS型。总之, 配位数与 r+/r- 之比相关:且: r+ 再增大, 则达到12 配位; r- 再减小, 则达到3配位。注意:讨论中将离子视为刚性球体, 这与实际情况有出入。 但仍不失为一组重要的参考数据。 因而, 我们可以用离子间的半径比值去判断配位数。8.2 共价键理论 8.2.1 路易斯共价键理论1916年,美国的 Lewis 提出共价键理论。 认为分子中的原子都有形成稀有气体电子结构的趋势,求得本身的稳定。 而达到这种结构,并非通过电子转移形成离子键来完成, 而是通过共用电子对来实现。通过共用一对电子, 每个H均成为 He 的电子构型, 形成共价键。 又如: Lewis的贡献在于提出了一种不同于离子键的新的键型, 解释了X 比较小的元素之间原子的成键事实。 但Lewis没有说明这种键的实质, 适应性不强。 在解释BCl3, PCl5 等未达到稀有气体结构的分子时, 遇到困难:8。2。2价键理论(Valence Bond Theory):共价健的形成和特点1927年, Heitler 和 London 用量子力学处理氢气分子H2, 解决了两个氢原子之间化学键的本质问题, 使共价键理论从典型的Lewis理论发展到今天的现代共价键理论。1. 氢分子中的化学键量子力学计算表明,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论