现代统计学发展的一条主线——KARL+PEARSON的生平、思想及其成就(基础数学专业优秀论文) .pdf_第1页
现代统计学发展的一条主线——KARL+PEARSON的生平、思想及其成就(基础数学专业优秀论文) .pdf_第2页
现代统计学发展的一条主线——KARL+PEARSON的生平、思想及其成就(基础数学专业优秀论文) .pdf_第3页
现代统计学发展的一条主线——KARL+PEARSON的生平、思想及其成就(基础数学专业优秀论文) .pdf_第4页
现代统计学发展的一条主线——KARL+PEARSON的生平、思想及其成就(基础数学专业优秀论文) .pdf_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北师范大学硕士研究生学位论文 中文摘要 k a r lp e a r s o n 是2 0 世纪统计学的伟大奠基人 他的工作在描述统计 学向推断统计学发展的历史舞台上起到了承前启后的作用 为统计学随 后的飞速发展奠定了坚实的基础 本文在详尽占有材料的基础上 围绕k a r lp e a r s o n 的工作系统地阐 述了现代统计学的三大突破性进展 清晰地展现了从1 9 世纪中叶到2 0 世纪中叶统计学发展的一条脉络 系统地介绍了这段时期统计学的思想 演变过程 以期为现代统计学研究提供借鉴意义 关键词 卡尔 皮尔逊皮尔逊曲线系统相关及回归理论 z 一拟合优度检验 河北师范大学硕士研究生学位论文 a b s t r a c t k a r lp e a r s o nm a d ef u n d a m e n t a lc o n t r i b u t i o n st ot h es t a t i s t i c so ft h e t w e n t i e t hc e n t u r y h i ss t a t i s t i c a la c h i e v e m e n t sn o to n l yp r o v i d e dc o n t i n u i t y w i 也t h ed e v e l o p m e n to ft h ed e s c r i p t i v es t a t i s t i c s b u ta l s op r o v i d e dt h e f o u n d a t i o nf o r t h ed e v e l o p m e n to ft h ei n f e r e n t i a ls t a t i s t i c sa n dt h em o d e r n o nt h eb a s i so fa b u n d a n tm a t e r i a la n dc e n t e r i n go nt h ew o r k so fk a r l p e a r s o n t h i sp a p e rs y s t e m a t i c a l l y i l l u m i n a t e st h et h r e er e m a r k a b l e d e v e l o p m e n t si nt h es t a t i s t i c a lh i s t o r ya n dc l e a r l ys h o w st h ed e v e l o p m e n to f s t a t i s t i c sf r o m18 5 0t o19 5 0 s ot h a tw ec a l lg e taw h o l eu n d e r s t a n do ft h e i d e o l o g i c a le v o l u t i o no ft h es t a t i s t i c a lt h e o r y ih o p et h a ti ti su s e f u lt ot h e r e s e a r c ho fm o d e mm a t h e m a t i c a ls t a t i s t i c s k e yw o r d s k a r lp e a r s o n t h es y s t e m o fp e a r s o nc u r v e s c o r r e l a t i o n a n dr e g r e s s i o n c h i s q u a r e dt e s to f g o o d n e s so ff i t 知识水坝 pologoogle为您整理 学位论文原创性声明 本人所提交的学位论文 现代统计学发展的一条主线 k a r l p e a r s o n 的生平 思想及其成就 是在导师的指导下 独立进行研 究工作所取得的原创性成果 除文中已经注明引用的内容外 本论文 不包含任何其他个人或集体已经发表或撰写过的研究成果 对本文的 研究做出重要贡献的个人和集体 均已在文中标明 本声明的法律后果由本人承担 论文作者 签名 动心拯 如呷年争月 日 学位论文原创性确认书 学生毖红艳所提交的学位论文 现代统计学发展的一条主线一 k a r lp e a r s o n 的生平 思想及其成就 是在本人的指导下 由 其独立进行研究工作所取得的原创性成果 除文中已经注明引用的内 容外 该论文不包含任何其他个人或集体已经发表或撰写过的研究成 果 指导教师 签名 岬年铲月宝 们跏 日 知识水坝 pologoogle为您整理 河北师范大学硕士研究生学位论文 引言 统计学是一门古老而又常新的科学 它源于社会经济问题以及国家首脑管理社 会事务的需要 其发展贯穿在实干家对统计方法的应用中 1 9 世纪7 0 到8 0 年代之 前统计学的中心一直在欧洲大陆 随着ec 朔d t o n 1 8 2 2 1 9 1 1 j j 统计方法研究遗传学 统计学的中心开始向英国转移 1 8 8 4 年k p e a r s o n 1 8 5 7 1 9 3 6 来到伦敦大学学院任 教 在他的影响下 许多著名的统计学家如w s g o s s e t 1 8 7 6 1 9 3 7 i 乙a f i s h e r 1 8 9 0 1 9 6 2 j n e y m a n 1 8 9 4 1 9 8 1 等纷纷来这里学习 英国逐渐成为世界统 计学研究的中心 从1 9 世纪末到2 0 世纪前2 0 年间 i cp e a r s o n 的工作在英国统计 学界占据统治地位 他凭借着 应对艰苦工作的精神 和 在他人成果中遨游的能 力 为统计学理论的发展做出了巨大的 开创性的贡献 i cp e a r s o n 是2 0 世纪统计学的伟大奠基人 堪称2 0 世纪统计学之父 在他那 个时代 统计方法非常贫乏 而且很不完善 kp e a r s o n 的工作开创了统计学的新 纪元 他继承了前人正ye d g e w o r t h l f g a l t o n l 八j q u e t e l c t 2 在统计学方面的 工作 受到同时代人 w f w e l d o n 3 gu 卉的影响 为之后现代统计学的一 系列先进成果奠定了基础 为2 0 世纪数理统计学理论的产生做出了重要贡献 l j p e a r s o n 在描述统计学阶段向推断统计学阶段发展的历史舞台上起到了承前启后 的作用 围绕kp e a r s o n 和相关人物的传记及其工作评述 我们可以追溯1 9 世纪 中叶到2 0 世纪中叶统计学发展的一条脉络 它向我们展示了这段时期统计学发展 的概貌 1 9 世纪 许多统计学家 哲学家认为在分析和解释统计数据中正态分布是唯一 可用的 到了1 9 世纪末 w f r w e l d o n 发现的偏态数据激发了kp e a r s o n 对这一 问题的研究 正是艮p e a r s o n 发展的频率曲线系统彻底打破了这一观念 2 3 相关及 回归的概念最早由f g a l t o n 提出 k p e a r s o n 全面继承和发展了ec a l t o n 的思想 把相关及回归理论进行了推广和一般化 遗憾的是 在由样本相关系数估计总体相 关系数的问题上 他和r a f i s h e r 之间的误解影响了双方的沟通和理解 阻碍了这 l ey e d g e w o r t h 1 8 4 5 1 9 2 6 2l 丸j q u e t e l e t 1 7 9 6 1 8 7 4 3 w f kw e l d o n 1 8 6 0 1 9 0 6 4g u y u l e 1 8 7 1 1 9 5 1 河北师范大学磺士研究生学位论文 一理论的发展 1 9 0 0 年 k p e a r s o n 引进了著名的矿一拟合优度检验 这项工作在 理论和应用上都具有重要意义 以上三方面是现代统计学史上取得的重要成果 它 们作为第二章是本篇论文的重点和难点 现有的一些文献中也有这方面的研究 e s p e a r s o n 按照时间顺序介绍了k p e a r s o n 的生平及其在各个领域的工作 李醒民在 皮尔逊 一书中详细介绍了k p e a r s o n 在科学哲学方面的思想 陈希孺在 数理 统计学简史 中对数理统计学中的主要知识做了系统介绍 而本文的作者在认真研 读统计学专业知识以及大量文献的基础上 着重围绕k p e a r s o n 在统计学方面的工 作详尽介绍了上述现代统计学上的三大突破性进展 展现出现代统计学发展的一条 历史主线 从而使我们对这段时期统计学的社会背景和思想演变过程有个整体的了 解 本文共分三部分 第一部分是不平凡的k p e a r s o n 介绍了艮p e a r s o n 之前统 计学的发展状况 他的生平及其一生的事业 第二部分是现代统计学的三大突破性 进展 阐述了从正态分布到偏态分布的发展演化 相关及回归理论的发展和k p e a r s o n 的开创性工作 z 2 一拟合优度检验 并侧重体现他与其他统计学家的联 系和相互影响 展示了现代统计学发展的轮廓 第三部分是推断统计学的基石 强 调了艮p e a r s o n 承前启后 继往开来的历史功绩 2 河北师范大学硕士研究生学位论文 一 不平凡的k a r lp e a r s o n 1 1 背景 统计学是一门关于数量资料的搜集 整理 分析和解释的科学 它讨论的是在 一定程度上能用数量信息 即由计数或测度得来的信息加以回答的问题 其中心思 想是 由部分推断整体1 3 j 统计工作者的责任 在于选定所需要信息的种类 适当 有效地搜集与加工此项信息 应用能产生有效结论的原理和技术 对不确定的情况 做出明智的判断 并解释最终的结果 在统计学方面有所作为的不仅仅是数学家 更多的是那些实干家 他们大多兴趣广泛 博学多识 善于运用统计方法来研究各 个领域的问题 推动了统计学的发展 更有趣的是 一个全新领域的发展常常由应 用统计学家开启 然后由数学家进一步完善深化 统计学的发展动力是实用性 只 有在解决实际问题的过程中才能衡量统计学的有效性 找到合理的判断尺度 4 1 由 此可以得出统计学这门学科的特点 来源于实际问题 经过理论的升华 再次接受 实际应用的检验这样一个哲学上的三步曲 严格地讲 s t a t i s t 起初的意思是 p o l i t i c i a n 或者 s t a t e m a n 它的词根来 自于拉丁语 s t a t e 状态 而状态的描述是近现代统计学的重要根源之一嘲 一般 认为统计学的历史可以追溯到迄今两千三百多年的亚里士多德时代 a r i s t o t l e 3 8 4 b c 3 2 2 b c 在他的著作 政治学 中描述了1 5 8 个国家包括各城市的 历史 行政 科学 艺术 人口 资源和财富等社会及经济情况的比较 分析 这 种比较性描述的初步尝试后来由意大利和德国学者发展为很接近近代统计学的一 门学科 称为统计学 德文译为 s t a a t e n k u n d e 意思是指国情学 随着商业和手 工业的发展 以及海外市场和殖民地的相继开拓 欧洲主要国家都深深感到调查国 内外情况的必要性 资本主义萌芽较早的威尼斯 自十三世纪中后期起首先开始举 办 国势调查 之后 德国 意大利 荷兰 英国也有了关于国势论的专著 后 来出现了国势学派和政治算术学派 1 7 世纪中期以后 由于研究对象和提倡方法的不同 出现了人口统计学派和经 济统计学派 但只是作为政治科学的一个分支 为政治部门服务 到了1 8 世纪 观测误差理论吸引了数学家的注意力 成为1 9 世纪备受关注的话题之一 p s 河北师范大学硕士研究生学位论文 l a p l a c e 1 7 4 9 1 8 2 7 开创了概率论发展的新阶段 并在人口统计 养老金 估计寿命 审判调查等方面广泛地应用了概率论 c f g a u s s 1 7 7 7 1 8 5 5 在讨论行星轨道问题 时为了处理观测误差而引进了最d 乘法 并独立导出正态分布 为误差理论奠定 了基础 s d p o s s i o n 1 7 8 1 1 8 4 0 推广了大数定律 引入了重要的泊松分布 1 9 世 纪中期 l a j q u e t e l e t 将概率论引入统计学 他应用大数定律 正态分布和误差 理论研究自然现象和社会现象 使统计学在 政治算术 所建立的 算术 方法的 基础上 在准确化道路上大大跨进了一步 1 9 世纪末 俄国数学家p l c h e b y s h e v 1 8 2 1 1 8 9 4 发展了大数定律的一般理论 为数理统计学的形成和发展奠 定了基础嘲 1 8 6 7 年 数理统计学 一词首先出现在德国数学家t w k t s t e i n 发表的 论文 数理统计学在政治经济学和保险学中的应用 中 1 8 7 2 年 t b s p r a g u e 将 该文翻译为英文 从此 数理统计学 一词便开始广泛应用了 数理统计学作为 f q 独立的学科形成于二十世纪二三十年代 它的形成应归功 于1 9 世纪末f g a l t o n w f w e l d o n eye d g e w o r t h 和kp e a r s o n 等人的工作 f g a l t o n 把统计方法应用到遗传学中 使得生物统计学成为应用统计学的重要一环 7 1 沿着他的理论前进的是w f w e l d o n 和kp e a r n 他们共同创办了期刊 生 物计量学 为统计学的发展营造了有利阵地 f ye d g e w o r t h 善于运用概率论研究 社会经济学 他在前人的基础上取得了许多新成果 j b s h a l h e 认为 在f g a l t o n 之后 数理统计学的发展主要以kp e a r s o n l 8 9 3 1 9 0 3 年期间发表的著作为 基础嘲 k p e a r s o n 把统计学与概率论融为一体 发展了许多通用的统计方法 1 9 2 2 年 他曾经这样描述统计学家的目标 人类的想象力总是很丰富 但是只有当我 们通过研究去发现它和经验的符合程度 证明其合理性时 我们的想象才有意义 这正是他在统计学研究工作上的真实写照 9 大约在1 9 世纪7 0 年代 随着eg a l t o n 开始应用统计学研究遗传学 统计学的中心也逐渐由欧洲大陆向英国转移 1 8 8 4 年 i cp e a r s o n 来到大学学院之后 在他的影响下 许多著名的统计学家纷纷来到这里 英国逐渐成为统计学的中心 到1 9 1 5 年时 i cp e a r s o n 建立的课程在英国统计学中 已达到一流水平 kf e a r s o n 堪称2 0 世纪统计学之父 通过他所在的伦敦大学学院 以及他这段时期的主要工作 我们对1 9 世纪中叶到2 0 世纪中叶统计学发展的全貌 可窥见一斑 4 河北师范大学硕士研究生学位论文 1 2k a r lp e a r s o n 的生平 1 8 5 7 年 k p e a r s o n 出生于英国伦敦 他是来自北赖丁的约克郡人的后代 他 后来经常去北赖丁的山谷度假 喜欢在田间的小路上思考各种问题 感受着祥和宁 静的绿草芬芳 任思绪的野马在空旷的田野上驰骋 i cp e a r s o n 是w p e a r s o n 和f s m i t h 的d j l 子 在三个孩子中排行第二 他的 父亲是一名诉讼律师 工作能力极强 经常向他的两个儿子强调努力工作的重要性 父亲旺盛的精力给k p e a r s o n 留下了深刻印象 他曾这样评述他的父亲 无论冬 天还是夏天 只要是正常上班期间 他每天早晨4 点就起床阅读诉讼案件 为法庭 上的发言做准备 只有在假期时我们才能真正和他在一起 他总是忙于打猎 钓鱼 航海等各种户外活动 他的精力充沛 让我自叹不如 另外 w p e a r s o n 对历史研 究也很感兴趣 人们在他去世以后留下的小图书馆里发现了他许多从未发表过的笔 记 包括盎格鲁撤克逊编年史 末日裁判书 约克郡史等多种论题 关于k p e a r s o n 的母亲的资料并不多 我们只知道她出身于海员家庭 但k p e a r s o n 似乎对大海并 没有多大兴趣 小时候k p e a r s o n 体弱多病 父母很担忧 常常不让他和其他孩子一起玩耍 直到1 8 6 6 年初 i cp e a r s o n 和他的哥哥a r t h u r 一直由p e n n 教授功课 1 8 6 6 年6 月 r d l i a m 一家搬迁之后 kp e a r s o n 才进入大学学院学习 1 8 7 3 年 他由于健康原 因退学 又开始在家庭教师的教导下学习 虽然他很不情愿这样学习 但是受这位 老师的影响 他对力学产生了浓厚的兴趣 1 8 7 3 年底 经父亲同意 他来到剑桥学 习 从一开始父母就希望他们的儿子去剑桥读书 并且希望至少有一个能够学习数 学 因为a l f 血u r 在剑桥选择的是文学 所以学习数学的期望自然就落到了i cp e a r s o n 身上i l 当时剑桥的数学荣誉学位考试在英国大学中是最有威望的 为了准备剑桥 大学的数学考试 他曾经跟随j e r e n d a l lh a r r i s j d t a y t o r 和e j r o u t h 学习 e j r o u t h 是剑桥大学历史上最著名的指导教师之一 正是他激发了i cp e a r s o n 在 应用数学 力学和弹性理论方面的特殊兴趣 当然在剑桥 kp e a r s o n 的兴趣不仅仅是数学 他还阅读过a d a n t e j w v o n g o e t h e 和j jr o u s s e a u 的原著 旁听过大学神学教授的自由演讲 与同学讨论数学 物理 宗教等各类问题 他积极地接受各种新鲜事物 并从中享受着无穷的快乐 河北师范大学硕士研究生学位论文 他还加入了一个大约有3 0 到4 0 人的小社团 同其中的许多人建立了深厚的友谊 这一时期的k p e a r s o n 还具有很强的追求自由的精神以及与荒谬权威作斗争的勇 气 例如 他虽然对宗教精神 教义和历史一直很感兴趣 但却拒绝参加强制的正 规的神学讲演 在摆脱旧观念之前 他一直以一种批判的态度寻找自认为有价值的 观念 由此我们可以看出他这种不畏强权 崇尚真理的性格恰恰暗示了今后的大有 作为 1 8 7 5 年 i cp e a r s o n 以第二名的成绩获得了剑桥国王学院提供的奖学金 1 8 7 9 年 他以数学优等生获得文学士学位 同年 在数学荣誉学位考试中取得好成绩 获得一等合格第三名 1 8 7 9 年到1 8 8 4 年 k p e a r s o n 大部分时间都呆在德国 正 如i n e w t o n gw l e i b n i z 发现微积分一样 这是他在找到一生的事业之前不断积 累 勇于探索的时期 在这段时间里 k p e a r s o n 涉猎了许多领域 他曾在海森堡 跟随gq u i n c k e 学习物理 跟随i cf i s c h e r 学习形而上学 在柏林学习罗马法律 还参加关于达尔文主义的讲演 另外 他还对德国民俗学 条顿民俗史前语言 文 学 宗教 改革史 德国人文主义和路德的特性 社会主义和妇女问题产生了浓厚 的兴趣 成为了一位热情的社会主义者 他把达尔文主义和社会主义融合在一起 形成了社会达尔文主义 并把自己的教名c a r l 改为了k a r l 这段时期i cp e a r s o n 作 为一名青年人思想活跃 求知欲极强 然而他在成长的历程中也曾因为找不到真正 想从事的事业而苦恼 在1 8 8 0 年出版的处女作 新维特 中就充分体现了他当时 的心情 之后他开始在各个领域展开研究 并参加了各种丰富的社会活动 1 8 8 2 年春 他就 德国的社会生活和思想 作了1 8 次讲演 同年 他在汉普斯特德就 十六 世纪的德国社会生活和思想 作了1 2 次讲演 并接连发表了 德国的人文主义 明斯特市的上帝的天国 和 马丁 路德 他对德国物质和智力的影响 三篇文 章 这些讲演和文章后来都收集在 自由思想的伦理学 中 在这期间他还就德国 耶稣受难剧搜集资料 这些材料成为后来发表的 死亡的机遇 的主体内容 他还 匿名出版了关于这方面的一个研究 三位一体 十九世纪的耶稣受难剧 除此之 外 他在 学园 雅典娜神庙 和其它刊物上发表了大量的信件 文章和评论l l 川 编辑 出版了w i cc l i f f o r d 未完成的遗著以及己故的i t o d h u n t e r 的弹性历史的手 稿 并独自出版了一本科学史著作 巴雷 德 圣维南的弹性研究 从 自由思想的 6 河北师范大学硕士研究生学位论文 伦理学 的讲演中 我们可以看到kp e a r s o n 逐渐形成成熟的社会哲学和人生信条 它向我们展现了这样一个年轻人的形象 聪明 自信 具有把握所涉猎专业的非凡 能力 当发现不同意见时 他急于冲向它 试图把世界秩序扭转过来 幸运的是 他遇到了h b r a d s h a w 从而懂得了严密性和耐心的重要性 这为他走上科学 有 效的研究道路打下了基础 kp e a r s o n 一生获得许多荣誉 1 8 8 4 年 kp e a r s o n 就任伦敦大学学院应用数 学和力学系的戈德斯米德讲座教授 1 8 9 6 年 他当选为皇家学会会员 两年后被授 予达尔文奖章 1 9 1 1 年 他辞去戈德斯米德讲座教授的职位 遵循eg a l t o n 的遗 愿成为第一任高尔顿讲座教授 但是他淡薄名利 提携后辈 他认为奖章和荣誉应 该多发给年轻人 只有这样奖章的作用才能得到更充分的发挥 1 9 3 2 年 k p e a r s o n 婉言拒绝了被授予的大英帝国勋位和爵士头衔 1 9 3 4 他年又谢绝了皇家统计协会 1 0 0 周年纪念日上给他颁发的盖伊奖章 1 9 3 3 年 i cp e a r s o n 退休后他管理的实验 室分为两部分 分别由r a f i s h e r 和他的儿子e s p e a r s o n 接任 之后 他仍留在 大学学院从事 生物计量学 的编辑工作 从退休到1 9 3 6 年去世又发表了3 4 篇文 章 l 1 3 一生的事业 尽管k p e a r s o n 精力旺盛 又具有应对艰难工作的能力 在数学以外的很多方 面都可以找到他的著作 然而 他发现所有的这些追求都不能让他满足 他所期望 的是处理符号而不是文字的工作 他曾经迷茫过 做过许多尝试 但最终还是走向 了他最钟爱的数学事业 他把数学 尤其是统计学作为一生中探索真理的武器 k p e a r s o n 的研究工作博大精深 他特别善于抓住所研究问题的本质 运用娴熟的推 理技巧求得解答 他相信重要的本质性的东西都是简单的 他以这种高屋建瓴之势 推动了整个统计学的发展 取得了卓越的研究成果 首先kp e a r s o n 在剑桥的主攻专业是数学 完成学业后他也很希望能够从事这 方面的工作 从1 8 7 9 年到1 8 8 4 年期间 他曾经申请过六个以上的数学职位 但是 都没有成功 这段期间他也尝试过其它职业 但始终没有放弃数学 例如 1 8 8 1 年 前两个学期 他担任伦敦国王学院和大学学院临时空缺的数学教授 讲授高等数学 1 8 8 2 年 通过朋友w h m a c a u l a y 的帮助 他开始了第一项数学工作 这是关于小 7 河北师范大学硕士研究生学位论文 球在液体中脉动的理论 直到1 8 8 7 年才发表 1 8 8 3 年他又发表了两篇文章 题目 分别是 球体和椭球体在液体媒质中的运动 和 简论无限弹性体的扭曲 经过 不懈努力 他终于在1 8 8 4 年7 月被任命为大学学院应用数学与力学系的讲座教授 作为一位教师k p e a r s o n 是非常成功的 他在伦敦大学学院前六年的主要职责 是给工程系的学生上课 几乎所有的课程 静力学 动力学 机械学 统计学 他都 以几何学方法和图示方法为基础来讲解 他发现这种方法能够很好的阐明和简化物 理规律 使那些没有受过高等数学训练的学生更容易接受 达到事半功倍的效果 另外 kp e a r s o n 对于维持课堂秩序也有一手 在3 0 年的教学工作中他没有把任何 一个学生赶出课堂 他在这些活动中获得了宝贵的经验 后来他在格雷欣夏姆学院 的讲演很受欢迎无疑与这一时期积累的经验是分不开的 然而 在完成编纂工作和教学工作之后 i cp e a r s o n 仍然面临着选择一个新的 努力方向的问题 这时 他遇到了eg a l t o n 和w f w e l d o n 由于他们的影响 k p e a r s o n 真正开始了统计学的研究 1 8 8 9 年 f g a l t o n 出版了 自然遗传 k p e a r s o n 读了其中的一篇文章 认识到存在着比因果关系更广泛的类别 相关 这种新的概念使得物理学 人类学及社会学问题等都可以用数学方法来处理 之前 k p e a r s o n 认为在因果关系的范畴内精湛的数学知识只能用于解释自然现象d o 是 f g a l t o n 从宏观上把他从先前的偏见中解放出来 走向了更彻底 更全面的统计学 研究中 而w f i lw e l d o n 向i cp e a r s o n 提出的实际问题 激发了他研究统计学的 热情 为他在很多方法上的创新提供了动力 接下来的几十年里 他开始单枪匹马 奠定统计学的基础 从此与统计学结下了不解之缘 事实上 i cp e a r s o n 最早讲授统计学是在1 8 9 1 年1 1 月1 8 日的讲演中 当时他 讨论的是图解统计学 他总是能在准备演讲的过程中发现新的研究问题 对来自生 物 物理及社会科学中的统计学问题进行了复杂正规的图示处理 这些讲演很快受 到空前欢迎 前来听课的有工人 手工业者 职员等等 在前两年的时间里 学生 的数目 增加了五到十倍 到1 8 9 3 年时已有大约3 0 0 多人 在1 8 9 1 年到1 8 9 4 年 格雷欣夏姆学院的演讲和1 8 9 4 年到1 8 9 6 年期间在大学学院关于统计学的讲演中 i cp e a r s o n 引进了许多新的术语 例如 他用 矩方图 来表示一个 时间图表 用 偏差 测量平均误差 还引进 标准差 来代替原来繁琐的 均方根误差 均 方误差 误差曲线 也开始被他称为 正态曲线 他分析了 正态曲线 挠 8 河北师范大学硕士研究生学位论文 曲线 和 复合曲线 讨论了相关的概念和复合非对称曲线 他最具创造性和革 命性的成就 z 2 一拟合优度检验也来源于在格雷欣夏姆学院的讲演 这些术语反 映了他在统计学观点上的变化 另外 1 8 9 2 年和1 8 9 3 年 他分别就 复差 和 相 关 给大学学院的研究生作讲演 成为后来发表在 哲学学报 上关于进化论方面 的前四篇论文 同时他完成了三元 四元 甚至n 元正态分布相关性的一般理论 体现了在斜相关和非线性回归 般理论方面的早期探索 从1 8 9 6 年5 月1 4 日k p e a r s o n 的报告中我们还可以看到他在误差判断 测量误差等方面都取得了显著的 进步 这些讲演促进了统计学的传播和发展 为k p e a r s o n 以后统计学事业的腾飞打 下了坚实的基础 1 8 9 3 年到1 9 0 1 年间 k p e a r s o n 向皇家协会提交了3 5 篇论文 到1 9 0 6 年 他已经出版了7 0 篇论文 其中包括更进一步的统计学理论及其应用 毫无疑问 k p e a r s o n 在这一阶段的工作为统计学成为一门独立的 严密的科学分 支奠定了基础f 埘 为他成为2 0 世纪统计学之父敞开了大门 二 现代统计学的三大突破性进展 1 9 世纪9 0 年代 人们对专门收集大范围的科学统计资料和研究数字统计方法 还缺乏兴趣 对搜集的数据也不能做出有价值的解释 统计方法也非常贫乏 1 3 1 要 解决实际闯题就必须创造新的方法 i cp e a r s o n 坚持实她考查 广泛收集原始资料 从实际应用中发明了许多统计方法 他本来的目的并不是发展数学原理 而是想发 明一种诠释生命和进化的方法 正所谓 无心插柳柳成荫 他发现了科学的新天 地 在为现代数理统计学莫定基础方面做出了重要贡献 下面将围绕 p e a r s o n 的 工作 阐述统计学史上偏态分布 相关及回归理论和矿 拟合优度检验这三方面的 发展演化 9 河北师范大学硕士研究生学位论文 2 1 从正态分布到偏态分布 2 1 1正态分布 正态分布进入统计学并不是一帆风顺的 从最初只是作为一个普通的数学公式 到后来在统计学中占有重要地位经历了一个漫长的过程 1 7 1 3 年 j a k o bb e r n o u l l i 1 6 5 4 1 7 0 5 的遗著 猜度术 出版了 其中他提出了 概率论中著名的 伯努利定理 研究了在大量重复的随机现象中出现的必然规律 经过多次反复试验 他证明了在一定范围内存在稳定的概率 但并没有说明这种偶 然现象背后到底存在怎样的秩序 d em o i w e 1 6 6 7 1 7 5 4 在研究j a k o bb e r n o u l l i 提出 的问题时得到了二项分布 在求二项分布的渐进公式中最早发现了正态分布的密度 函数 他第一次以文字的形式把这个公式写在论文中是在1 7 3 3 年1 1 月1 2 日 后 来又发表在 机会的学说 的第二版和第三版以及 分析杂论 的某些版本中 1 4 但是d em o i v r e 关于二项分布近似服从正态分布这一发现并没有引起人们的注意 k p e a r s o n 在编写 正态曲线史 时重新提到d e m o i v r e 的工作 人们这才认识到d e m o i v r e 的贡献 d om o i v r e 的这项工作具有重要意义 正如他所指出的 尽管机会 具有不规则性 由于机会无限多 随着时间的推移 不规则性与秩序相比将显得微 不足道嗍 刚开始 正态分布的密度函数并没有纳入到概率分布的行列 一直到1 8 世纪 末 正态分布仍未取得它后来的重要地位 而只是作为二项分布的近似表示 所涉 及的统计数据分析问题也主要与二项分布模型有关 进入1 9 世纪后 由于两位数 学家的卓越贡献 正态分布在数理统计学中的地位才重要起来 1 5 1 2 年 p s l a p l a c e 出版了 概率的分析教程 在这本书中他导出了原始形式的中心极限定理 后来 称为棣莫弗一拉普拉斯极限定理 通过这个定理可以把许多复杂随机事件的概率分 布归结为已知的正态分布 1 6 1 1 8 0 9 年 c f g a u s s 发表了 绕日天体运动的理论 这本书中包含一节有关 数据结合 的问题 在这一节中他讨论了误差分布理论 并且在此过程中独立导出了正态分布 推广了正态分布的应用 正是这个原因正态 分布也称为 高斯分布 1 8 6 7 年 p l c h e b y s h e v 推广了橡莫弗一拉普拉斯极限 定理 建立了关于各阶绝对矩一致有界的独立的随机变量序列的中心极限定理 1 7 1 1 0 河北师范大学硕士研究生学位论文 正态分布在中心极限定理中有着重要的地位 这是其在理论方面的重要反映 正态分布的应用也有了新的推进 以l 丸j q n 蜕e l e t 为代表的一些统计学家开 始将这一模型应用于社会数据的统计分析 并发现实际中的许多数据都可以很好的 用正态分布来拟合 1 3 1 f g a l t o n 曾经说过 据我所知 几乎没有任何东西能像宇 宙秩序那样 可以用 误差频数律 来表示的完美形式那样给人以深刻的印象 许多数学家 哲学家认为在分析和解释统计数据时正态分布是唯一可用的 一些学 者甚至认为1 9 世纪统计学是正态分布占统治地位的时代 然而随着应用的深入 人们发现在实际中有些数据并不能用正态分布来拟合 由此引发了人们的思考 促 进了一系列新理论的产生 2 1 2 偏态数据的出现 统计学家也逐渐认识到一组数据是否服从正态分布并不是理所当然的事情 必 须通过某种方法来检验 在统计学史上 科纳特曾建议用数组均值和中位数来检验 l a j q u e t e l e t 广泛应用正态分布拟合数据 他通过比较各数据区间的观察频数与 1 拟合频数来判断拟合的效果 建议用p 三的二项分布去拟合偏态数据5 但这些检 z 验方法比较粗糙 缺乏其可信度的概率分析 所以并没有起到实质性的作用1 2 5 1 到 1 9 世纪后期 数据与正态分布拟合不好的情况日渐引起注意 1 8 7 9 年 格兰姆开 始研究 偏态数据 的分布问题 齐勒在1 9 0 3 出版的 观察值的理论 中引进了 半不变量 后来经过查利尔的发展 形成了格兰姆 查利尔级数 之后被称为 埃其沃斯展开 的级数所取代 在这个问题的研究上做出重大贡献的是k p e a r s o n 他最初声誉的建立源于1 9 世纪在偏斜曲线方面的成就 1 9 世纪末 在其他数学家工作的基础上 kp e a r s o n 构想了更一般的概率曲线 证明了这个曲线系统的稳定性和应用的适用性 为统计 工作者提供了一个更加灵活广泛的工具 在介绍k p e a r s o n 的工作之前 我们有必 要提到w f w e l d o n 他在实际研究中发现了一组典型的不服从正态分布的数据 根据这组数据可以得到一个双峰分布 而且正是他提出的问题直接促成了瓦 p e r u s o n 统计学理论和方法的形成 5 这种思想正是后来瓦p 曲r j o n 著名的曲线系统的出发点 河北师范大学项士研究生学位论文 w e w e l d o n 深受达尔文自然选择理论的影响 1 9 世纪8 0 年代 他试图通 过研究动物和植物总体寻求支持这种理论的方法 1 8 9 1 年他就任伦敦大学学院动物 学乔德雷尔讲座教授 当时他已经在一篇论文6 中应用了一些基本的统计方法 上任 后他开始应用 改进 推广eg a l t o n 测量变异和相关的方法 目的是为达尔文的自 然选择理论提供实例 w f 1 1 w e l d o n 是kp e a r s o n 遇到的第一位生物学家 他总 是充满激情地与k p e a r s o n 讨论如何用数学来论证达尔文进化论的问题 午饭时间 他们经常一起讨论问题 餐桌成了他们友好战斗的场所 这两位年轻人提出问题 解决问题 甚至在菜单的背面计算结果 有时候还借助于午餐的面包 这是两个充 满活力的年轻人之间的 游戏 当时的人们对他们的工作并不是很看重 正如与 他们共用一个餐桌的f w o l i v e r 教授所说 在饭桌上投硬币 摆面包屑 且不断 改进成了进餐时的常事 但我不认为我们了解这些活动的重要性 kp e a r s o n 申 请格雷欣夏姆学院的几何学讲师资格时提交的大纲中就提到了统计学和概率论 直 到1 8 9 1 年他在格雷欣夏姆学院任职时才开始着手这些题材的报告 显然w f 亿 w e l d o n 在很大程度上影响了这些题材的扩展 1 8 9 9 年 w e w e l d o n 到牛津就 任比较解剖学利纳克尔讲座教授 此后一直呆在那里 但是他和kp e a r s o n 之间仍 然保持密切的联系1 1 9 1 二人的友谊促进了统计学的发展 k p e a r s o n 为w f w e l d o n 提供理论支持 w f 1 1 w e l d o n 在实际中发现的问题促进了k p e a r s o n 理论 上的发展 1 8 9 2 年 w f 1 1 w e l d o n 在测量 那波里蟹 的体宽时得到一个双峰分布 他发现这组数据不能用正态分布来拟合 但w f 1 1 w e l d o n 处理问题的方法非常粗 糙 他使用的变差由四分位间距得到 拟合优度的证据是通过检验得到的 当时没 有建立计算的常规方法 更没有专门用来计算的机器 仅仅通过经典误差理论已经 不能够解决他在这些工作中遇到的诸多问题 例如 怎样描述渐近的 双峰的及其 它非正态分布 怎样计算这些分布中参数的 最优 至少是 较好 的值 这 些估计的概差有多大 选择的结果对一个或者更多相关变量的影响有多大 这其 中包括用形态学手段来研究进化论的思想 w ei 乙w e l d o n 认识到自己在数学方面 的欠缺 于是请i cp e a r s o n 来完成他的分析 6 题为 t i m v a r i a t i o n 咖g i n c e t t m d a a p o dc t x l s t a c e a 河北师范大学硕士研究生学位论文 2 1 3 皮尔逊曲线系统的提出和发展 i cp e a r s o n 也因帮助朋友造就了一生的事业 为统计学的发展奠定了基础 他 研究偏态数据的问题是为了一种实用目的 寻找一些分布来拟合从实际中收集的数 据 从而在正态分布不适用的条件下可供选择使用 他的儿子e s p e a r s o n 在一篇 纪念文章中这样描述他的父亲 在1 9 世纪9 0 年代 因为统计学理论的基本研究 跟不上步伐 关于进化和遗传的生物计量学的研究常常受到阻碍 他所需要的是一 种方法 来拟合得到的数据 人们总是从最熟悉的事物入手解决问题 刚开始 针对w f i lw e l d o n 提出的 问题 k p e a r s o n 试图把频率曲线拆分为两个正态分布 他企图用形如 l j 1 1 1 生 功 c 7 言l e2 井 0 c 万 l p 2 一这样的公式拟合w f i lw e l d o n 的数 v z l r c r t v 上刀0 2 据 这里涉及5 个参数 c 介于o l 之间 a t o 2 q 吒 kp e a r s o n 的创新在于 他引进了矩方法 在这个问题中他第一次应用矩方法估计分布参数 提出通过计算 数据的前5 阶矩 让它们等于由上述分布中算出的对应阶矩 然后从所得的方程组 中解出这5 个参数 矩 起源于力学 在统计学中代表 平均值 1 9 世纪末 俄国数学家p l c h e b y s h e v 拟定了 矩量法 其学生a a m a r k o v 发展了他的方法 1 8 9 3 年 k p e a r s o n 将 矩 一词引入统计学中 2 0 1 他发展矩方法是为了确定某些特定形式的 频率分布的参数值 这些频率分布往往用于描述一组给定的观测或实验数据 在 k p e a r s o n 一开始帮助w f i lw e l d o n 分析数据时 就把自己的数学知识融入到统 计学方法和理论中 他希望通过矩方法构造一个新的统计系统 来解释w f w e l d o n 搜集的形成非对称曲线的数据 当曲线不对称时或者出现双峰时 构造四个 拟合曲线的参数表示数据的聚集或离散程度 这样就可以描述任何形状的分布曲线 的必要特征 矩方法使i cp e a r s o n 构建了统计方法的基础 它不像以前的方法只适 用于一些特定的场合 而是建立了一个一般的框架 即依赖于参数的一族曲线分布 这种方法具有普遍性 以往的有些问题实质上是这个方法在特定闯题中的应用 更 重要的是矩方法为参数估计理论的发展起到了一定的推动作用 为计算曲线中的常 量提供了代数解 直到今天 无论分布曲线的形状如何 这种方法在解释数据时仍 河北师范大学硕士研究生学位论文 然很有效 在解决w f i l w e l d o n 提出的问题之后 k p e a r s o n 进一步研究了偏态分布的 一般理论 1 8 9 3 年的秋天 k p e a r s o n 完成了题为 数学对进化论的贡献 的一系 列论文中的第一篇7 其中包含以他的名字命名的分布族中的一个特例 即著名的 分布族 也就是后来的皮尔逊 型曲线 实质上是自由度不必为整数的z 2 分布族 kp e a r s o n 把它称为 正态曲线的推广形式 具有非对称的性质 这个分布在统计 学中占有重要地位 可以用于很多现象的数据模型 它的分布的标准形式是 f x c e x p o x o 1 当 o 时 即为通常的指数 分布 另外值得提及的是 当口 i 1 昙一l 时 行为自然数 即为自由度为刀的z 2 分布 他的目的是拟合偏态 p 1 2 的二项分布 1 8 9 4 年 p e a r s o n 发表了论文 齐次材料的斜变差 这是 数学对于进化 论的贡献 中的第二篇文章 其中讲述了曲线系统的基础 引进了皮尔逊频率曲线 系统 同时还定义了i 到 型曲线 2 1 9 0 1 年k p e a r s o n 发表了该系列论文中的第 五篇 补充了v 型和 型曲线 1 9 1 6 年对 到 型曲线又做了补充 这个曲线系统 还包括有限值域及无限值域的对称和非对称曲线 大部分都是单峰曲线 也有u 一 型 j 型 反j 型曲线 在论文中他还讨论了这些曲线的应用 至此 k p e a r s o n 为偏态数据找到了各种类型的频率曲线 这些曲线可以更精确地描述我们所观测数 据的数学构想 为统计工作者提供了一个灵活实用的工具 更进一步地 i cp e a r s o n 提出利用矩方法来确定曲线系统中参数的值 具体做法是用前四阶样本矩与分布中 的对应阶矩列出方程 通过求解方程确定分布中的参数值 与原来的方法相比 p e a r s o n 曲线系统存在许多优点 第一 这些曲线使用 起来方便 灵活 由于 矩 方法这一工具的核心作用 选择的曲线类型是否合适 可以由届2 玺 属2 凳这个两个中心矩的比来确定a 第二 皮尔逊曲线系统存在 7 k p e r s o n 的总标题为 数学对进化论的贡献 的论文集一共包含1 8 篇论文 1 8 9 3 年发表了第一篇 到1 9 1 2 年发表了第1 8 篇 1 4 河北师范大学顽士研究生学位论文 理论根据 所有的曲线都可以从微分方程三孕 妻车l 其中口 g 是常数 中 j 积饿 拟 c 导出 这个方程是kp e a r s o n 考虑对称和非对称的二项概率分布及超几何概率分布 决定的频率多边形的各段斜率时发现的 发表在1 8 9 5 年的一篇论文中 改变方程 中参数的值可以得到不同的曲线 例如 令a b o c l d 0 可以得到正态分布 族 令a c o b 1 d c 口 卢 可以得到 分布等 假定我们处理的是正态总体 通过直接或简单的变换 统计检验中经常使用的许多判断尺度 如z 2 分布 j 2 分 布 f 分布 分布和两个方差的比的样本分布等 都是曲线系统中的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论