二氧化氮的电子结构.doc_第1页
二氧化氮的电子结构.doc_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二氧化氮的电子结构二氧化氮是氮的一种重要氧化物,它二聚生成N2O4的反应作为典型演示实验常给人留下深刻的印象。NO2的结构参数列于表1中。按照国内各种教材广泛采用的成键模型,二氧化氮是有大键的典型分子。这种模型可表示为 成键模型()有两点值得注意。(1)位于氮后侧的非键型轨道含有一对孤电子;(2)大键含有三个电子,其中两个进入成键轨道,一个进入非键轨道。 成键模型()虽然指出了NO2中NO键的双键性,解释了NO键长比标准单键短的原因,但却与一些重要实验事实相悖。电子顺磁共振谱证明,NO2中的单电子是位于氮原子型非键轨道中的孤电子,而不是非键电子。如果单电子真是电子,那么就无法解释表1表明NO2的分子得失一个电子后键长只略有改变,但键角却剧烈变化的事实,因为电子数一般对键长的影响远强于对键角的影响。显然,成键模型()是不成立的。 根据NO2分子的定性分子轨道能解图可将成键模型可以简略地表示为成键模型()与成键模型()的主要差别在于,分子中含有一个大键,而氮原子后侧的型轨道中只有一个孤电子。由于()中的四个电子有两个是成键电子,有两个是非键电子,故大键的键级为一,同()一样正确地预示了ON键的双键性。 根据价层电子对互斥理论,位于氮后侧的A1轨道电子数对分子形状有决定性影响。在NO2、NO2和NO2+中,这个轨道的电子数分别为2、1和0,故NO键电子对受到的斥力依次减弱,键角依次增大,这就圆满解释了表1所列键角的递变性。另一方面,这个轨道中的电子数越多,反键效应越强,NO键的强度越弱,键越长,因此这个轨道的反键性就定性地解释了表1所列键长的递变性。显然,成键模型()是无法合理解释这两种递变性的。 两个NO2分子沿NN连线共面接近即生成N2O4分子,此分子的结构参数如下7:d(ON)=118pm;d(NN)=175pm; ONN=1120; ONO=1350N2O4分子结构有两个有趣特点:(1)NN键长远大于标准NN单键长146pm(H2NNH2的NN键长);(2)GNO稍大于NO2中的ONO。 按照成键模型(),NN键是由两个NO2分子中氮后侧的弱反键A1轨道构成,故键的强度较弱,键较长。N2O4分子的ONO角较大则是由于氮后侧的孤电子配对成键后对ON键电子对的斥力减弱所致。若按成键模型(),则不可能生成稳定的平面N2O4分子,因为它赋予NO2分子中氮后侧的A1轨道两个电子,而按MO理论,满填轨道相互作用没有净的成键效应,所以不会有NN键生成,这个结论显然与事实不符。成键模型()还预言N2O4分子中不存在遍及整个分子的大键,从而正确地解释了NN键的单键性。若用两个NO2分子的型轨道作为构成N2O4大键的“原料”,则符合能量相近条件的轨道有三对。一对是成键轨道,由于它们都是满填轨道,故没有净成键效应。另一对是非键轨道,它们不但是满填轨道,而且在氮原子上的电荷密度为零,所以对生成NN键没有贡献。第三对是反键*轨道,它们不含电子,所以即使能构成成键轨道,也不会有成键效应。可见,N2O4虽有两个分别分布于NO2片段上的大键,却没有通常所说的大键。 有益的是分析一下构成错误成键模型()的原因。众所周知,在定性讨论分子结构时习惯上总是先构成“骨架”,然后再考虑离域轨道,即先把电子成对填入成键轨道,然后把余下的电子填入轨道。换言之,习惯上假设HOMO就是型轨道。对于碳氢化合物,这个假

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论