




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
以多代擴散模型探討高科技產品之擴散-以DRAM為例Application a Multi-Generation Diffusion Model to Technology Products-A Case of DRAM王明妤1 張嘉訓21真理大學工業管理學系副教授2真理大學管理科學研究所研究生E-Mail: .tw摘要自Bass(1969)提出新產品成長模型後,引發眾多學者的相關使用及研究。直到1987年Norton and Bass才開始提出同一產品各世代的擴散及相互間的替代關係,此後,關於多代產品擴散的後續研究也不多Norton and Bass(1992)、Speece and MacLachlan(1992,1995),而國內在此方面的研究也很少見(王裕民,民83)。故本文嘗試利用多代擴散模型探討八代DRAM產品之擴散情形。關鍵詞:Bass模型、多代擴散、預測AbstractResearch on the modeling of the diffusion of innovations has results in a body of literature since the publication of the Bass model in 1969. The diffusion model of adoption and substitution for multi-generation products didnt be introduced until Norton and Bass introduced in 1987. So far, there are only a few researches on the multi-generation diffusion model not only in domestic area but also in overseas (Norton and Bass(1992)、Speece and MacLachlan(1992,1995). Therefore, we attempt to investigate the adoption and substitution effects of eight-generation DRAM products by applying the multi-generation model developed by Norton and Bass (1987).Keywords: Bass model, Multi-generation diffusion, Forecast壹、緒論一、研究動機隨著科技日新月異,消費者對於產品需求層次的提高,產品的替換速率愈來愈快,產品的生命週期也較為縮短,因此,正確地對產品的市場銷售進行預測,有助於企業管理決策的制定。新科技不斷替代舊科技,比舊科技來的更有效率。例如:彩色電視取代了黑白電視;船舶的動力由早先靠風力的帆船演變至蒸汽引擎,然後由蒸汽引擎演變成內燃機引擎;柴油引擎火車頭取代了蒸汽火車頭;蠟燭取代了煤油燈,之後蠟燭被電燈泡所取代,而電燈泡又被日光燈所取代;個人電腦則從原本的PC XT歷經了AT、386、486到Pentium。這些例子均顯示許多新、舊技術間存在世代交替的現象。儘管如此,一項新產品的出現並非立刻達到其銷售的顛峰,而是一個逐漸擴散的過程,針對舊產品而言,而並非立刻就此消失。新一代產品藉著增強新的應用與功能,比舊一代產品擴大產品之市場潛量,並同時替代舊產品之使用者。隨著時間的演進,舊產品最後會在市場上消失,市場會逐漸變成新產品的天下。此過程將會一直循環(如圖1.1)。TIMEQUANTITYGENERATION ONEGENERATION TWOGENERATION THREE半導體產業中的DRAM(Dynamic Random Access Memory, 動態隨機存取記憶體)是科技替代最為明顯的例子。自1970年代早期推出第一代4K容量的產品後,以平均每三年成長四倍容量的速度增進,目前已達到512M DRAM,三十年間產品已替換了十個世代。圖1.1 高科技產品各世代消長變化圖資料來源:Norton, J.A. and F.M. Bass, “A diffusion Theory Model of Adoption and Substitution for Successive Generations of High Technology Products,” Management Science 33, 1987, 1069-1086.二、研究目的Bass(1969)提出新產品成長模型後,引發眾多學者的相關使用及研究。近三十多年來,許多學者對於Bass基本擴散模型之修正及擴充、參數估計方法的修正、彈性擴散模型、模型的應用等;均有較深入的研究,而且在於參數估計及銷售預測方面有較佳的成果。然而這些研究只侷限於一代產品的擴散,對於多代產品的研究並不多見。直到1987年Norton and Bass才開始提出同一產品各世代的擴散及相互間的替代關係,此後,關於多代產品的後續研究也不多(Norton and Bass(1992)、Speece and MacLachlan(1992,1995),而國內在此方面的研究也很少見(王裕民,民83)。Norton and Bass(1987)的研究中,雖然提出了第一篇有關多世代擴散模型的理論架構,而其並未考慮價格的因素。另外,在Speece and MacLachlan(1992)的研究中,作者加入了價格及市場成長率的因素。而且Christophe(2000)研究發現除了行銷組合變數會影響擴散速度外,經濟環境更會顯著地影響擴散速度。基於前述之動機,本文將嘗試加入價格因素的考量,透過實證加以應證。本文將利用多代擴散模型探討DRAM之擴散情形,用以預測其市場狀況。貳、文獻探討一、Bass基本擴散模型在行銷領域方面,Bass在1969年提出的新產品首次購買擴散模型融合新產品採用的創新與模仿觀點,將新產品的潛在採用者類分為創新者(innovators)及模仿者(imitators or non-innovators)。Bass擴散模型為行銷學上擴散研究的最主要啟蒙者,融合了Fourt and Woodlock(1960)與Mansfield(1961)所提出的兩種模式。其假設新產品的潛在採用者受到兩種傳播方式影響:大眾媒體與口碑。在發展的過程中,他進一步地假定這些潛在採用者可分為兩種群體:一是受到大眾媒體影響;其他的人則僅受到口碑的影響。前者稱之為創新採用者,後者則稱為模仿者。新產品的創新採用者受大眾媒體宣傳的訊息影響(此影響力稱外部影響)而決定購買新產品,不受已採用者意見的影響。模仿者的採購行為則是受之前購買者的口碑宣傳影響(此影響力稱內部影響)。在Bass模式最主要的用途即在於發展產品生命週期曲線,並且提供預測新產品首次購買的銷售量。因此,首次購買的擴散模型中含有一假設:在所考慮的期間內,沒有重覆購買的消費者,而且每位顧客的購買量均為一單位。故擴散模型描述的是某一產品類別的成長狀況。Bass觀念上認為創新者,即僅受到大眾媒體影響而購買產品的人,持續地存在擴散過程中的每一個階段。圖2.1顯示,非累積的採用者分佈在T*時達到頂點,是S形累積曲線的反曲點,也就是說在T *左右兩邊具有對稱性質。非累積採用者累積採用者反曲點因內部影響而採用創新之部份因外部影響而採用創新之部份pmpmT*時間T*時間圖2.1 Bass模型之分析性架構圖資料來源:Mahajan, V., E. Muller, and F.M. Bass (1990), “New Product Diffusion Models in Marketing: A Review and Directions for Research”, Journal of Marketing Research, Vol. 54, pp.1-26.擴散模型是以數學方程式建構產品擴散型態,發展創新產品之生命週期曲線。擴散預測模型有助於瞭解新產品導入市場之發展情勢,據以預測產品銷售、擬定產品行銷策略。Bass 擴散模型導自於危險函數(hazard function),以下列數學式(2-1)表示在時間t之前未曾採用,而在時間t時採用的機率是之前採用人數的線性函數。 (2-1)因此,Bass模型可表示成式(2-2):(2-2)其中,f(t):採用者的時間密度函數F(t):在t期的累積採用者分配函數p:創新係數,即大眾傳播媒體對新產品的潛在採用者的影響力q:模仿係數,即口碑對新產品的潛在採用者的影響力。其基本前提為在時間t時採用的條件機率會隨著採用人數的增加而增加,即部份採用者學習前人從而模仿採用,而另一部份則不受任何人的影響。參數q所反應的就是前者那份影響力,可稱之為模仿係數;p則為不受先前採用者影響的參數,可稱為創新係數。若m為基本採用者的潛在人數,則t期的採用者人數表示成如式子(2-3),而其累積人數如式子(2-4)所示。mf(t)=n(t) (2-3)mF(t)=N(t) (2-4)因此,Bass模式的基本形式可改為如式子(2-5)所示。 (2-5)第一項pm-N(t)表示不受先前已接受該產品人數所影響的採用人數,第二項(q/m)N(t)m-N(t)則表示受到已採用該新產品人數的影響而購買此新產品的消費者總人數。當時間t=0時,於方程式(2-5)中,n(0)=pm為基本的原始採用人數。式子(2-2)為一階微分方程,積分後再代入式子(2-4)即得S形累積採用者分配函數N(t),如(2-6)式。(2-6)因此,一旦N(t)已知,微分之後便可求出n(t),以及採用曲線達到頂點的時間T *。 (2-7) (2-8)tn(t)另外,當p值及q值大小之差異,將會有不同的擴散過程。當qp,即內部影響大於外部影響時,採用人數會先增加然後下降(如圖2.2所示)。當qp,即外部影響大於內部影響時,採用人數會持續下降情形(如圖2.3所示)。tn(t)圖2.2 採用者擴散分佈圖(qp) 圖2.3 採用者擴散分佈圖(qp)資料來源:Bass, F.M. (1969), “A New Product Growth Model for Consumer Durable,” Management Science, Vol.15, pp.215-227.二、多代擴散模型從文獻回顧可以發現,有關在行銷擴散模型的運用與發展,已具備完備的理論基礎,且有許多實證研究上的支持。相較而言,關於多代擴散模型的相關研究屈指可數,因而引起作者的注意,欲一探究竟。在發展多代擴散模型的理論架構之前,首先回顧下列式子: (2-9) (2-10) (2-11)以上係最基本的Bass擴散模型,由於此模型只考慮單獨一代產品的擴散,因此並未考慮多代產品時,各代產品間的替代效果。(一)替代效果在探討新舊科技間替代效果的文獻中,以Fisher and Pry(1971)發展出的模型最為常用,下列為此模型的概念。Fisher and Pry(1971)在研究新舊科技間的替代效果時,基於三個假設:1.科技的進步可以被視為是滿足同一需求的不同方法間的競爭性替代結果。2.由實際觀察的結果發現,新科技經常會完全的汰換舊科技。3.舊科技被新科技取代的市場佔有率和舊科技尚餘的市場佔有率成一比例,此謂之Pearls法則(Pearls Law)。假設僅有新舊兩種科技互相競爭,其模型可表示如下: (2-12)其中,s代表新科技的市場佔有率(1-s)代表舊科技的市場佔有率t為時間k為常數。Fisher and Pry雖然提出了非常簡潔有力的模型,但很明顯的可發現其不足之處:1.只考慮兩代產品。2.考慮的是市場佔有率,而非銷售量。(二)多代擴散模型理論架構Norton and Bass(1987)參考了Fisher and Pry(1971)的替代模型與Bass(1969)基本擴散模型後,首度提出多代擴散模型,Norton and Bass(1987)做下列的假設:1.一旦某項應用採納某種程度的新科技後,不會回復到再使用舊科技。2.一項創新產品的銷售量,為使用者人數與每人平均消費數量的乘積。並假設每人每期的消費數量為一常數。3.一項創新有許多可能的應用,有些應用是目前即可發覺,有些應用則需一段時間後才會被發覺。假設創新在應用性有上限,而且此上限為一常數。在Norton and Bass(1987)所提的模型中,以下簡稱Norton and Bass模式,令M為一項創新產品的潛在接受者人數的上限,r為平均每人消費量,此兩者均為常數,則m=Mr為一常數,表示每期最大可能銷售量,即市場潛量。一項創新產品的擴散過程可用Bass基本擴散模型來表示。在假設只有一代產品且沒有更新產品或替代的情況下,銷售量可表示為:s(t)=mF(t) (2-13)其中,銷售量與累積的採用者密度函數成正比。在此,利用一系列的多代創新產品情況,進而探討此模型。每代產品會在前一代產品尚未飽和時便導入市場。而且新一代產品獲得的銷售量來源有二部份:1.由於擴充了新的用途,因此擄獲了原本並不會購買舊一代產品的銷售量。2.替代了原本會購買舊一代產品的銷售量。其中,在第二部份又可分為:(a)原本已採用舊一代產品,升級至採用新一代產品的消費者。(b)即將要購買舊一代產品,但由於新一代產品的推出,因而採用新產品。在以下的討論中,視兩者為無差異。令i表示某產品的世代指標,si表示第i代產品的銷售量,在只有兩代產品的情況下,模型表示如下: (2-14) (2-15)其中,si(t)表第i代產品在第t期的銷售量m1表示第一代產品之市場潛量m2表示由於第二代產品之推出額外增加的市場潛量2為第二代產品的推出時間F2(t-2)=0 for t1。5、 Mahajan and Muller (1996) 文章中探討IBM主機的新一代產品導入時機,應如何當機立斷地作決策;而此決策會受到一些因素影響,如:市場潛量的大小、平均報酬率、擴散與替代參數、折現因子等。因此將Wilson and Norton(1989)所提出的“now or never”法則擴充為“now or at maturity”。此外,還提出了多代之間潛在採用者可能出現蛙跳式(leapfrog)之採用行為。以IBM四代產品為例,第四代產品的潛在採用者可能來自於:(1) 第一代的採用者可能跳過第二、三代而直接採用第四代產品。(2) 第二代的採用者可能跳過第三代而直接採用第四代產品。(3) 第三代採用者升級至第四代產品。(4) 首次購買者,未曾採用之前的任何一代。6、 Kim, Seo and Lee(1999)文中對韓國IMT-2000(International Mobile Telecommunications-2000)用戶數進行預測並探討Norton and Bass(1987)發展出的多代擴散模型可能產生的問題;文中以三代通訊技術作為實證對象,第一代FDMA(Frequency Division Multiple Access),第二代TDMA (Time Division Multiple Access)與CDMA(Code Division Multiple Access),第三代PCS(Personal Communications Services)。當有外部影響時,則Norton and Bass(1987)發展出的多代擴散模型將不再適用。因此作者將模型修改如(2-21)式:S1(t)=m1F1(mint,2)-m1F1(2)F1-2(t-2)S2(t)=m1F1(2)F1-2(t-2)+m2F2(t-2)1-F3(t-3)S3(t)=m1F1(2)F1-2(t-2) m2F2(t-2)+m3 1-F3(t-3) (2-21)其中,si(t)係指第i代通訊技術在t期的用戶數for F1(t-1)=0 (t2(t-1-2)=0 (t2)7、 Jun and Park(1999)文章中將擴散效果與選擇行為效果合併到多代擴散模式中,以IBM主機及全球DRAM市場為實證對象,用以瞭解各世代間擴散與替代的過程。由於過去選擇行為研究忽略了動態的需求;而且先前的多代擴散模型很少包含控制變數。因此,作者結合了選擇機率、擴散過程、市場行銷組合變數進行實證研究。其中,作者將銷售資料分成首次購買需求、升級購買需求,進而推導出選擇機率模式,最後得到完整的多代擴散模型。8、 Kim et al. (2000) 依據Norton and Bass (1987) 之模型為基礎,以成長性的資訊產業-無線通信業為例,探討產品款式間(generation)的替代關係外,更加入了不同種類間(category)的競爭與互補關係。結果顯示潛在需求非固定不變,而是與其他種類銷售量有關。9、 Sohn and Ahn (2001)文中提到新科技經濟價值的評定,由於新技術的產生需對R&D、商業化過程作大量的投資,一旦成本投入,將會如滾雪球般愈滾愈大,因此,投資者就必需花費更多心力作成本-效益分析(Cost to Benefit Analysis,CBA)。而新技術發展的CBA要素之一為需求擴散模型,若當一項產品或新技術處於發展階段時,此需求擴散模型將會很難去推斷,所以便需藉由模擬方式進行。過去許多技術評估的研究只有就單一世代的模型進行模擬,並未考慮新、舊世代間之交替。因此作者將透過蒙地卡羅模擬(Monte Carlo simulation),闡述如何應用多代技術擴散模型作出更精準的成本-效益分析(CBA)。10、 Danaher, Hardie and Putsis JR.(2001)認為過去科技創新的多代擴散研究很少考量到行銷組合變數的影響。文章中作者提出包含行銷組合變數的模型,其實證對象為歐洲國家兩世代行動電話產品(NMT450,NMT900),用以了解價格因素對兩世代行動電話在擴散與替代效果的影響。11、 王裕民(民83),國內第一篇探討多代擴散模型在高科技產品上實證的研究,以二代DRAM產品以及國內286、386、486主機板的實證研究,參考Speece and MacLachlan(1992)的研究,嘗試在多代擴散模型加入價格之考量。參、研究設計一、研究架構首先應瞭解需要估計的參數有哪些?再透過資料的收集建立多代擴散模型,再經由模型之比較,了解各模型之配適與預測效果。本研究架構圖如下:擴散理論與模型之探討資料收集與分析1. 影響擴散的變數2. 各期銷售量3. 各代產品導入市場的時間4. 各期價格多代擴散模型之建立參數之估計1. 模仿係數(q)2. 創新效果(p)3. 各代產品所增加之市場潛量(mi)1. 模型之配適效果2. 模型之預測效果1. 各模型之配適效果比較2. 各模型之預測效果比較圖3.1 本研究架構流程圖二、研究模型本研究是以全球DRAM銷售量作為實證對象,因此本節將針對此探討其實證研究模型。多代擴散模型如式(3-1)所示:s1(t)=F(t)m1(1-F(t-2)s2(t)=F(t-2)m2+F(t)m1(1-F(t-3)s3(t)=F(t-3)m3+F(t-2)m2+F(t)m1(1-F(t-4)s4(t)=F(t-4)m4+F(t-3)m3+F(t-2)m2+F(t)m11-F(t-5)s5(t)=F(t-5)m5+F(t-4)m4+F(t-3)m3+F(t-2)m2+F(t)m11-F(t-6)s6(t)=F(t-6)m6+F(t-5)m5+F(t-4)m4+F(t-3)m3+F(t-2)m2+F(t)m11-F(t-7)s7(t)=F(t-7)m7+F(t-6)m6+F(t-5)m5+F(t-4)m4+F(t-3)m3+F(t-2)m2+F(t)m11-F(t-8)s8(t)=F(t-8)m8+F(t-7)m7+F(t-6)m6+F(t-5)m5+F(t-4)m4+F(t-3)m3+F(t-2)m2+F(t)m1 (3-1)其中,s1(t)為全球4K DRAM之(年)出貨量;s2(t)為全球16K DRAM之(年)出貨量;s3(t)為全球64K DRAM之(年)出貨量;s4(t)為全球256K DRAM之(年)出貨量;s5(t)為全球1M DRAM之(年)出貨量;s6(t)為全球4M DRAM之(年)出貨量;s7(t)為全球16M DRAM之(年)出貨量;s8(t)為全球64M DRAM之(年)出貨量; m1為4K DRAM之市場潛量;m2為因16K DRAM推出所增加之市場潛量;m3為因64K DRAM推出所增加之市場潛量;m4為因256K DRAM推出所增加之市場潛量;m5為因1M DRAM推出所增加之市場潛量;m6為因4M DRAM推出所增加之市場潛量;m7為因16M DRAM推出所增加之市場潛量;m8為因64M DRAM推出所增加之市場潛量;1= 0,為1974年;2= 2,為1976年;3= 4,為1978年;4= 8,為1982年;5= 11,為1985年;6= 14,為1988年;7= 17,為1991年:8= 20,為1994年:三、參數估計方法在此多代擴散模型中共有五個參數須由迴歸模型加以估計,分別為:創新係數p、模仿係數q、各代產品增加的市場潛量mi。本文利用SAS之統計軟體,使用非線性最小平方法SYSNLIN程序依據過去的出貨量來進行模型參數估計,然後再使用模擬程序SIMNLIN依據估計出的參數作模擬及預測,進而了解模型之配適效果與預測效果。肆、實證結果與分析本章擬以第三章所建立之多代擴散模型理論架構作為實證究之基礎,實證對象為1974年至2000年共計27年之全球DRAM出貨量資料。DRAM的基本架構,是運用兩個電路元件(一個電晶體及一個電容器)構成一個記憶細胞,以記憶細胞內電容的帶電荷狀態儲存一位元的資料。DRAM架構中使用到電容器,而電容器會自動放電,所以必須另外設計一個電路經常性的檢查電容器上的電壓,並經常充電或放電以免資料遺失,這就是”記憶體更新”的動作,因DRAM 須不斷做記憶體更新的動作,所以又稱為”動態”隨機存取記憶體。本文欲將多代擴散模型應用在高科技產品的實證上。在DRAM方面,將以全球銷售量為對象,產品世代則包括4K、16K、64K、256K、1M、4M、16M、64M共計八代,本文搜集到的歷史銷售量以及價格資料從1974年至2000年,共計27年。資料出處/LogletLab/DRAM/。表4.1為各模型對DRAM參數估計值比較表。由表4.1可知,除M8外,其餘的參數值P、Q、M1、M2、M3、M4、M5、M6、M7對應的p值均小於0.05的水準甚多,由此可知個參數值都在合理範圍內。其中16K DRAM、256K DRAM、4M DRAM、16M DRAM產品之推出所增加的市場潛量非常可觀。表4.1 各模型對DRAM參數估計值比較表參數參數意義估計值p值P創新係數0.0118040.0069Q模仿係數0.656785.0001M14K DRAM之市場潛量106.28350.0001 M216K DRAM推出所增加之市場潛量450.808.0001M364K DRAM推出所增加之市場潛量242.69340.0186M4256K DRAM推出所增加之市場潛量591.42110.0006M51M DRAM推出所增加之市場潛量311.79550.003M64M DRAM推出所增加之市場潛量862.6066.0001M716M DRAM推出所增加之市場潛量594.33720.0112M864M DRAM推出所增加之市場潛量9.2205560.9715表4.2顯示多代擴散模型對全球DRAM產品出貨量資料之配適度。除了4K DRAM產品因屬創新產品,導致模型配適情形不佳外,其他產品世代之R-Square值都頗高。表4.2 模型對DRAM之配適能力表產品世代R-Square4 K0.289516 K0.913264 K0.7285256 K0.90351 M0.96454 M0.93216 M0.899564 M0.9408圖4.1 各世代DRAM產品之擴散模型圖4.1為由模型估計出的各世代DRAM產品之出貨量擴散情形。伍、結論本研究對全球4K、16K、64K、256K、1M、4M、16M、64M DRAM等八個世代產品進行實證研究。從研究結果發現,將多代擴散模型擴大運用於八個世代以上之產品後,研究發現此模型之配適與預測能力皆有不錯的表現。由其本文以市場變化迅速之DRAM產品為實證對象,多代擴散模型描繪高科技產品間的擴散及替代情形,具有非常良好的解釋及預測能力。因此,在於制訂相關決策時,此模型將是一個良好的決策參考工具。參考文獻 1 .王裕民,多代擴散模型在高科技產品上的實證研究,國立台灣大學商學研究所未出版碩士論文,民國八十三年。 2 .Bass, F.M., “A New Product Growth Model for Consumer Durable,” Management Science 15, 1969,215-227. 3 .Christophe V. den B., “New Product Diffusion Acceleration: Measurement and Analysis,” Marketing Science 19, 2000, 366-380. 4 .Danaher, J. D., B. G.S. Hardie, W. P. Putsis JR., “Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation,” Journal of Marketing Research 38, 2001, 501-514. 5 .Fisher, J.C. and R.H. Pry, “A Simple Substitution Model of Technological Change,” Technological Forecasting and Social Change 3, 1971, 75-88. 6 .Fourt, L.A. and J.W. Woodlock, “Early Prediction of Market Success for Grocery Products,” Journal of Marketing 25, 1960, 31-38. 7 .Islam T. and D. G. Fiebig, “Modeling the Development of Supply-restricted Telecommunications Markets,” Journal of Forecasting 20, 2001, 249-264. 8 .Jun D. B. and Y. S. Park, “A Choice-Based Diffusion Model for Multiple Generations of Products,” Technological Forecasting and Social Change 61, 1999, 45-58. 9 .Kim, N., D. R. Chang and A. D. Shocker, “Modeling Intercategory and Generational Dynamics for A Growing Information Technology Industry,” Management Science 46, 2000, 469-512. 10 .Kim, Y. B., S. Y. Seo and Y. T. Lee, “A Substitution and Diffusion Model with Exogenous Impact: Forecasting of IMT-2000 subscribers in Korea,” Vehicular Technology Conference, VTC 1999 - Fall. IEEE VTS 50th 1999, Volume 2, 948952. 11 .Mahajan V. and E. Muller, “ Timing, Diffusion, and Substitution of Successive Generations of Technological Innovations: The IBM Mainframe Case,” Technological Forecas
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年成功入职必刷题招聘笔试模拟题目及答案
- 2025年英语翻译岗位招聘考试指南翻译技能预测题及解析
- 危险化学品泄漏事故现场处置方案
- 2025健康养老专业试题及答案
- 2025年可持续发展工程师专业能力认证考试试题及答案
- 2025年健康照护师高级试题及答案
- 2025年保健药品测试试题及答案
- 2025年酒店管理师证考试中级模拟题集与答案解析
- 药剂科人员工作总结汇报5篇
- 北京市门头沟区2023-2024学年九年级下学期中考第二次模拟考试道德与法制试题含参考答案
- 宿舍用水管理办法
- 2025年自动驾驶汽车在自动驾驶环卫车领域的应用研究报告
- 潜才晋升管理办法
- 二零二五年度汽车配件销售合作协议
- 手术室术中无菌技术课件
- 2025至2030中国食品工业中的X射线检查系统行业项目调研及市场前景预测评估报告
- 企业安全生产费用支出负面清单
- 2024云南师范大学辅导员招聘笔试真题
- 2025年广省中考作文《走到田野去》写作指导及范文
- 2025年山东省中考数学试卷(含答案逐题解析)
- 慢阻肺非肺部手术麻醉管理策略
评论
0/150
提交评论