




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本科毕业设计(论文)开题报告题目: 基于单片机电动自行车蓄电池均衡模块设计 课 题 类 型:科研 论文 模拟 实践学 生 姓 名: 学 号: 专 业 班 级: 系 别: 指 导 教 师: 开 题 时 间: 2010 年 4 月 8 日开题报告内容与要求一、毕业设计(论文)内容及研究意义(价值)电动自行车具有轻便、实用的特点,深受消费者的喜爱,在生活中很常见。电动车以蓄电池为能源,清洁,方便。但由于目前电动自行车的蓄电池普遍没有均衡管理系统,以至于蓄电池在使用时出现各种损耗的情况,减少了蓄电池的使用寿命,如蓄电池在使用过程中会出现使用时间变短,充电时间变长,充电越来越频繁等。这些问题都是不可忽视的,影响到电动车行业的发展。本课题基于单片机针对电动自行车用蓄电池设计一款均衡模块,以提高蓄电池的使用效率,延长使用寿命,降低成本产品,提高性能。为达到这一目的,基于单片机对蓄电池状态参数进行检测,从而估算出各蓄电池模块的荷电状态,并以此控制各蓄电池的工作状态,对蓄电池工作状态进行均衡管理。所以,本课题的研究可以改善电动车蓄电池的使用情况,延长蓄电池寿命,提高蓄电池使用效率,是很有实际意义的,在电动自行车产业化方面具有广阔的应用前景。二、毕业设计(论文)研究现状和发展趋势(文献综述)蓄电池在使用过程中产生不均衡的原因主要有以下几个方面:在制造过程中,由于工艺上的问题和材质的不均匀,使得即使是同一个厂生产的同型号的电池的性能也不可能完全一致;在装车使用时,电池组中各个电池的温度场和通风条件、自放电程度及其充放电过程的差别等因素在一定程度上也增加了电池参数的不一致性;各蓄电池单体极板的腐蚀速率的不同;电池组中各电池是串联形式,流过每个单体的电流是一样的,而各单体的容量和性能不相同,这就造成充放电的不均衡;不断重复的充放电过程更加剧了不均衡现象。目前公认蓄电池自身的性能参数影响电池的寿命,但电池本身的问题不在电池管理的范围之内。电池外部因素也影响电池的寿命,如电池的充电参数,包括充电方式、充电电流、充电结束电压;电池的放电参数,包括电池的放电电流、放电深度、脉冲电流等;电池的温度;对电池维护的方式和频率。从电动车的使用过程中发现,单个电池的寿命远比电动车中的电池长,研究表明这是因为电池处在不均衡的状态中,充放电过程也不均衡,而不断重复的充放电过程更加剧了不均衡现象,充电少的电池的寿命缩短,引起所在的电池组的寿命缩短,从而使整个电池系统的寿命缩短。为了解决这个问题必须实现均衡充放电,且应创造保证均衡的温度的条件。如果设计蓄电池均衡模块对蓄电池组进行管理,可以优化电池的外部参数,大大增加电池的寿命。国外有人研究阀控密封铅酸蓄电池均衡系统。这个系统不是简单的监测蓄电池,而是设计成具有管理和控制蓄电池的功能。此系统的目的是改变蓄电池“恒压充电”的方法。因为恒压充电的方法不能满足不同蓄电池所需的不同充电电流。系统监测的内容包括:单电池电压、电池内部温度、放电电流及放电过程中测量电池组总电压。在监测的基础上对蓄电池进行分析,并进行管理和控制。这样更有利于对蓄电池的维护,延长蓄电池使用寿命。在行驶的动态过程中,电池的电压不均衡性表现十分明显,以试验用电动车采用的铅酸蓄电池组中串联的两块电池为例,两块放电前电压基本一致的电池在放电瞬间,两块电池的电压差最大可达0.5V。停止放电时电池的端电压又趋于一致。经过实验证明,随着使用时间的增加,蓄电池电压的平均值和标准差分布呈正态分布。目前针对不均衡问题的解决方法,蓄电池的不均衡问题除了在充放电方法上采取措施外,还有以下一些方法:在制造工艺上保证出厂质量,尤其是初始电压的一致性。蓄电池组各蓄电池单体参数一致性的严格筛选。使用过程中尽量使各单体处于相同的环境中,定时测量各蓄电池的电压分布情况,及时更换电压偏离正常值太大的蓄电池单体。配置蓄电池组能源均衡管理系统。前三种方案降低了电池制造厂家的成品率,增加了成本;较为理想的是最后的方案,它不但能减轻制造厂家的压力,而且在运行时能实时、动态地控制动力电池的充放电过程。为了提高电池的利用,我们设计保护电路,基于单片机的均衡电路。如何提高续驶里程,电池如何在变化的气候条件下工作,如何对电池快速充电。电池的数量有限,充放电并不均衡。如何有效地利用电池的能量,延长电池的寿命。电动车还有能量回收的问题。这些问题都涉及到电池的能量管理。与电机、电机控制技术、电池技术相比,电池管理还不是很成熟。如何实现无损电池的充电,监控电池的放电状态,避免过放电现象,同时对电池进行实时的或定期自动检测、诊断和维护,最大限度地保证电池的可靠运行,国内外都在进行研发。在日本,本田公司开发的车用电池能量管理系统包括:管理控制模块、车载充电器、惯性控制开关、高压系统安全检测装置、DC-DC变换器等。国外蓄电池均衡系统的技术比较成熟,并且研究发展了蓄电池管理系统。在蓄电池管理系统中,监测的电池参数有所不同,研究的方法更复杂。国外先进技术及研究成果对我国进一步进行有关蓄电池管理方面的研究,可以起到借鉴作用。为了使电池能够最大限度的输出动力,并拥有足够长的寿命,电池组的管理就显得尤为重要。因此,结合现有的条件,分析不同工况下电池组的使用状况,在此基础上制定了电池管理系统的策略,并研究提出了一种以单片机为控制核心的电池管理系统,通实现监测各块电池的参数和电池组的电压,并将这些参数实时反馈给单片机。当个别电池的电压值低于平均水平,将对该块电池进行补充充电,行驶过程中对电池组进行补充充电,从而保证电池组的均衡。经过程序调试,提出可行的控制方案,且成本低廉,开发简单,人机界面清晰明了,易于操作,能够有效的提高电池性能。电池在使用中的维护和保养才能有效提高电池组的使用寿命因此如何对电池组均衡及保护。以实现串联电池组的性能尽可能接近单体电池的性能不仅是我们面临的一个新课题,而且具有更加现实的意义。三、毕业设计(论文)研究方案及工作计划(含工作重点与难点及拟采用的途径)此次设计采用单片机为主控制芯片组成均衡模块的实施方案,结合单片机嵌入式系统技术,通过监控、测试、采集蓄电池的各项信息参数,判断蓄电池的工作状态,相应的做出分析、调整。通过软硬件结合实现对蓄电池的均衡管理,使蓄电池处于最佳状态。工作重点与难点:1.电池状况的信号采集、分析和处理 2.系统软件实现设计方案:蓄电池组单片机调理电路A/D转 换DC/DC开关电流温度驱动电路继电器组图1:均衡系统设计的硬件实现方案框图均衡处理是否均衡 状态改变数据通信 电压、电流、温度检测处理充电处理空闲处理放电处理状态判断系统初始化开始YN(使用中)(充电中)(空闲)图2:均衡系统设计的软件实现流程图设计(论文)工作进度计划:第1周: 布置课题和设计任务第2周: 查阅资料,熟悉课题,写开题报告第3周: 查阅资料,熟悉课题,写开题报告第4周: 熟悉具体实现技术途径,确定开题报告第5周: 进行开题报告会,硬件电路总体方案设计第6周: 硬件电路总体方案设计第7周: 硬件电路总体方案设计第8周: 软件功能分析第9周: 软件模块的确立,编写软件第10周:软件修改与完善第11周:软硬件调试第12周:继续调试,修改硬件电路和软件代码第13周:实现基本功能第14周:各种材料的总结,试验结果的分析第15周:毕业论文的撰写第16周:毕业论文的撰写第17周:毕业论文的修改第18周:准备答辩四、主要参考文献1 沈德金,陈粤初MCS-51系列单片机接口电路与应用程序实例M北京:北京航空航天大学出版社,19902 胡汉才.单片机原理及接口技术M. 北京:清华大学出版社,19963何立民MCS-51系列单片机应用系统设计M北京:北京航空航天大学出版社,19904 郭自强. 铅酸蓄电池的应用及其可持续发展J .中国自行车, 2004, (08)5 李红林, 张承宁, 孙逢春, 李军求, 张旺. 锂离子电池组均衡充电和保护系统研究J. 北京理工大学学报, 2004, (03).6 王震坡, 孙逢春, 林程. 不一致性对动力电池组使用寿命影响的分析J . 北京理工大学学报,2006, (07).7 冉建国, 陈胜军. 通过电池均衡提高铅酸蓄电池组寿命J. 电源技术, 2006, (07).8 柯惟力, 张宁. 电动自行车电池组的被动均衡充电J. 蓄电池, 2006,(03).9 杨存龙, 杨迪帆, 马国哲. 电动自行车用VRLA电池容量早衰的原因浅析J. 蓄电池, 2006,(03).10 郑勇.浅谈阀控铅酸蓄电池的失效和维护J.通信电源技术,2005.11 聂再清.电池组监控与诊断专家系统的研究与实现D.清华大学计算机科学与技术系,1998.12 龙顺游.VRLA蓄电池运行监测管理系统的研究J.电源技术,200013 Nasser H.Kutkut,Life Cycle Testing of Series Battery Strings With Individual Battery Equalizers,EVS-1814 N.H.Kutkut,D.M.Divan,D.W.Novotny,Charge Equalization for series Connected Battery Strings,IEEE IAS Annual Meeting,October 1994,pp.1008-101515 Kutluay K,Cadirci Y,Ozkazanc Y S,Cadirci I.A new online state-of-charge estimation and monitoring system for sealed lead-acid batteries in Telecommunication power supplies.IEEE Trans on Industrial Electronics,1996,52(5):13151327外文文献及翻译英文原文:Influence of the charge regulator strategy on state of charge and lifetime of VRLA battery in systemsDepartment of Physics, Xian Jiaotong UniversityBy simulating real working conditions of household photovoltaic system, the effects of overcharging on lifetime of valve-regulated lead-acid (VRLA) battery in solar home systems have been investigated; and the influences of three kinds of charge regulator strategies on state of charge and lifetime of VRLA battery have also been studied by experiments. A quantitative analysis of the VRLA battery behaviour under different charge regulator strategies was carried out. It is found that the temperature compensation of the end-of-charge voltage is necessary for VRLA battery, particularly in hot climates. The linear temperature compensation for the end-of-charge voltage keeps VRLA battery the best state of charge compared with other charge regulator strategies.Based on our results, the design engineers can choose a cost-effective regulator according to the details of photovoltaic system and local climate, and can estimate working state of VRLA battery installed in a system correctly, so as to extend VRLA battery lifetime in solar home systems. The clarification of the performance difference of VRLA battery under different regulators may be an important issue for determining life-cycle costs and servicing requirements.IntroductionA typical household photovoltaic system includes a solar array, VRLA battery, regulator and load. In such a stand-alone photovoltaic system, VRLA battery provides storage energy, which is delivered at the time the solar radiation is low, that is, in cloudy periods or at night-time. The battery is often considered as being the weak point of a photovoltaic system, in terms of cost, lifetime and reliability (Spiers and Rasinkoski, 1995;Potteau et al., 2003). It was demonstrated that the failure of photovoltaic systems was firstly induced by the damage of VRLA batteries, and it was concluded that about 85% of VRLA batteries used in photovoltaic systems were damaged by irreasonable regulators from the results of reliable analysis of lots of photovoltaic systems (Yang et al., 2003). Most VRLA batteries used in household photovoltaic systems will have a service lifetime which is less than that of the photovoltaic modules because of inherent characteristic. The irreasonable regulator will shorten the VRLA battery much more, and the reliability of the system depends on the performance of the VRLA battery as well as on its good behaviour and expected lifetime. So the VRLA battery lifetime is an important factor in the calculation of life-cycle costs and also when planning future maintenance requirements.Irregular VRLA battery operation causes a variety of degradation mechanisms: excessive gassing; corrosion; sulfation; loss of water; and active mass. In this sense, the compatibility between battery requirements and the associated charge controller seems to be, and is in practice, a decisive point to extend battery lifetime. However, this is not always taken into account when designing PV systems. At present, it is very frequent in PV solar handbooks and technical specifications linked to PV rural electrification programs, that the charge regulator and batteries are specified separately, including setpoint voltages.The battery and charge controller combined with performance is still not well coordinated, with important consequences not only on battery duration, but also on the short-term energy supply to users.In photovoltaic systems, it is nearly always the temperature- dependent corrosion process that limits the battery lifetime, and not the cycle life (Spiers and Rasinkoski, 1996). The battery working temperature depends on not only ambient temperature, but also overcharging, which makes the working temperature of battery high. The battery working temperature is different under different regulators at the same ambient temperature, but few people found the importance of overcharging and temperature compensation of VRLA battery in a household photovoltaic system, so it is very important to analyze the performance difference of the VRLA battery under different regulators.Although the VRLA battery lifetime in a household photovoltaic system is important in determining lifecycle costs and servicing requirements, unfortunately it is not calculated with any certainty yet. Some authors (Armenta-Deu, 2003; Ross and Markvart, 2000; Guasc and Silvestre, 2003) have presented a simple model for estimating photovoltaic battery lifetime, but they did not consider the difference of battery lifetimes caused by different regulators. Because some experiments for modeling the VRLA battery in household photovoltaic systems are complicated, they predicted the battery behaviour of stand-alone photovoltaic system usingmathematical approaches only.In this paper, we combine the charge controller with the VRLA battery, and analyze the influence of three kinds of charge regulator strategies on state of charge and lifetime of the VRLA battery in household photovoltaic systems by experiments. And a quantitative analysis of the VRLA battery performance under different charge regulator strategies is given for the first time. By analyzing the effect of the charge regulator strategy on state of charge and lifetime of the VRLA battery in household photovoltaic systems, technical recommendations for charge regulation of VRLA batteries are given. According to the details of photovoltaic system and local climate, the design engineers can choose a cost-effective regulator, and estimate working state of the VRLA battery installed in a system correctly. The experiments can also help the battery industry to choose and develop appropriate VRLA batteries for photovoltaic applications according to the actual operating conditions of solar home system. The clarification of the performance difference of theVRLAbattery with different regulators may be an important issue for determining life-cycle costs and servicing requirements. These features are distinct from other battery applications in, for example, uninterruptable power supplies, where the batteries are kept at full SOC for the longest time of the year, or in vehicle traction applications such as fork lift trucks, where the batteries are fully recharged regularly with high charging currents. Operational experience reveals that the lifetime of batteries in stand-alone applications based on solar energy is, in general, unsatisfactory while compared to the battery lifetime reached in traditional applications. Batteries in solar home systems normally have to be exchanged after 3 years.From the VRLA battery manufacturer and system designer specifications, the VRLA battery voltage is limited to a range from a maximum to a minimum value. The maximum value currently corresponds to the H2/O2 formation at the charging half-cycle, and prevents from water losses and electrode corrosion.The state of charge (SOC) is the available capacity in a battery expressed as a percentage of rated capacity. Because a VRLA battery storage capacity increases with temperature, the percentage of capacity derived by this experiment is above 100% at higher temperature. Study of methods for the temperature compensation. The data indicates that both of the step temperature compensation and the linear temperature compensation make the VRLA battery the better state of charge compared with Regulator for household photovoltaic systems. Although the linear temperature compensation is better than the step temperature compensation for photovoltaic solar system, in view of suppressing overcharging, the step temperature compensation is favorable, in which temperatures should be divided into four segments, i.e.,-105 _C; 535 _C; 3555 _C; 55 _C. From the result we also found that the VRLA battery _s capacity decreases about 1% for every 1 _C drop in temperature. So for household photovoltaic systems installed in hot climates or cold climates, it is necessary to choose a regulator with the temperature compensation function. Results and discussion The experimental section shows that lifetime of VRLA battery is strongly influenced by the seasonal overcharge. For a VRLA battery of six years lifetime, it_s real lifetime only has three years because of overcharging. This is explained by the corrosion model of the VRLA battery. Overcharging VRLA battery produces corrosion of the positive grids as well as excessive gassing which can loosen the active material in the plates, reducing the capacity and lifetime of VRLA battery. So in order to prolong VRLA battery_ lifetime, overcharging protection must be designed in regulator, which is in agreement with field experience for VRLA battery in systems (Copetti and Chenlo, 1994).It is recommended to do everything to keep the VRLA battery temperature low. 1525 _C is an ideal operating temperature for VRLA batteries,which is consider to be the best,in agreement with the results of May and Sauer (May,1995; Sauer and Bachler, 1997).ConclusionsThe influences of the charge regulator strategies on state of charge and lifetime of the VRLA battery in systems have been studied by using the measured datas. Based on experimental results, the design engineers can choose a cost-effective regulator according to the details of photovoltaic system and local climate, and estimate working state of the VRLA battery installed in a system correctly.The understanding for these factors is very important for further optimization of VRLA batteries and control strategies for applications. Although the conclusion is derived by simulating real working conditions, it is in agreement with field experience for the VRLA battery in systems, and it holds for VRLA battery in any stand-alone system.中文译文:充电调节策略对系统中VRLA蓄电池的充电状态和寿命的影响西安交通大学 物理系通过模拟真实工作条件下的蓄电池工作环境,以调查研究过充电对于太阳能家庭光伏系统中使用的VRLA电池的影响。实验中,通过创造三种不同的充电调节策略下的工作环境,研究充电状态和VRLA电池寿命。在不同的充电调节策略下,定量分析电池的充电行为。研究发现,在不同气温条件下,特别是在炎热地区,最终充电电压的温度信息很有研究必要。和其他策略相比,终电压与温度补偿呈线性关系,使VRLA电池处在最好的充电状态。以我们的研究结果为基础,通过光伏系统自身和本地气候因素等有关细节,设计工程师可以选择划算的调节模式,正确预测系统中的电池工作状态。以延长VRLA电池寿命。在不同调节模式下,明显的区别表现是使用周期和服务要求的重要问题所在。一个典型的家用光伏发电系统包括太阳能接受阵列,VRLA蓄电池,调节器,负载。在独立的光伏系统中,VRLA电池提供储藏能量功能,例如当太阳能能量不够时,在阴雨天或夜间。而VRLA蓄电池恰恰是光伏系统的弱点,从成本,寿命和可靠性这几方面看,事实证明光伏系统的崩溃首先归结到电池的损坏。从可靠的分析得出,由于不合理的工作方式,80%的VRLA电池在使用中损坏。大部分VRLA电池的使用寿命小于正常使用寿命。而系统的可靠性决定于VRLA电池的表现,所以,在循环使用周期成本和规划未来维护的要求上,VRLA电池的均衡模块设计是系统的重要一环。不规范的使用操作,是导致电池质量下降的主要原因。腐蚀,硫化,失水等是常见的原因。这样看来,电池需求条件和充电调节控制两者的协调统一是提高使用质量,延长使用寿命的关键。可是,这一起决定作用的一点却常没有被考虑进去。目前的农村PV系统电气化项目中,当设计PV系统时,充电调节和电池规格在手册中非常常见,包括设定点电压,但通常两者联系并不协调,从而导致严重后果。不仅对于电池,还包括能量提供的使用者。尽管在光伏系统中,VRLA电池对于循环使用成本和服务需求上的重要作用,但是,到目前为止,还没有可以实现定量计算的方法。有作者发表估算电池寿命的简单推理模式方法,但他们并没有考虑到不同的工作环境所造成的差异,因为很多试验的系统结构非常复杂,他们用数学方法计算,预测的是电池在单个系统中的表现,并没有考虑到实际中的具体情况。在试验中,我们联系充电控制,通过实验分析三种充电调节策略。在不同的充电调节模式下定量分析。通过分析影响,给出关于VRLA的科学建议。考虑系统的细节调节及温度因素,设计工程师能够选择一种合理的方法,能够正确预测。试验也对电池工业的发展给出了实际中的操作建议。对于VRLA电池,充电方式对其寿命有重要影响。而在系统中,不仅要能确保充放电循环,充电调节也应确保充电方式达到最好,相关时间和相应的电流电压状态,显示电池在单个系统中的具体条件下:充放电电流小于标准放电电流;长时间,几星期甚至月余,电池达不到满充状态这些特征完全不同于其他应用电池,举例来说,不间断的供电,电池在一年中保持满充;或在车辆牵引应用比如叉车,电池规则的大电流满充,实践表明,与电池在独立应用系统中相比,光伏系统中的电池不及其正常寿命,通常在使用三年后就要更换了。从VRLA电池制造设计规格来看,VRLA电压在一个值范围内波动。最大值对应于H2/O2化合的充电半周期。并且防止失水和电池内部的电极腐蚀。充电的有效容量对应于额定容量。电池的充电容量随温度变化。数据表明,温度补偿和线性温度补偿让VRLA电池处于更好的充电状态。温度大致分为四个区间:-105 _C;535 _C;3555 _C;55_C。根据实验结果我们发现,温度每下降1度,VRLA电池容量容量下降百分之一。所以在设计系统中要考虑设置函数进行温度调节。结果显示VRLA电池寿命受季节性影响。对于原本6年寿命的电池,真正只有三年的实际使用期,由于过充导致电池内部腐蚀,失活等,从而减少使用寿命。所以,过充保护调节以延长电池使用已经成为公认的事实。同时,尽可能的保持电池在1525 _C条件下工作,也是很重要的。通过对实验的测量数据进行研究,在不同的调节方式对VRLA电池的充电和寿命皆有影响。在实验数据基础上,设计工程师可以根据实际工作环境的细节条件进行参考,预测蓄电池在系统中的工作状态。分析清楚这些实际因素,对于VRLA电池的控制均衡非常重要,尽管实验研究是在仿真条件下完成的,但是对实际中的独立系统仍是适用的。指导教师意见 签名: 月 日教研室意见 教研室主任(签章): 月 日评审小组意见 参加评审人员(签字): 月 日袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- sap考试试题及答案
- 电网基础知识培训课程课件
- 电缆颗粒生产基础知识培训课件
- 三洲田道路施工方案
- 安徽省亳州市蒙城县涡南片区联考2022-2023学年九年级上学期期中化学试题(含答案)
- 电站电工知识培训内容课件
- 电磁炉介绍与使用
- 北师大六上期中考试卷及答案
- 北京地理模拟中考试卷及答案
- 3-8-Diamino-6-phenylphenanthridine-生命科学试剂-MCE
- 街道综合执法培训课件
- 湘科版科学六年级上册全册教案(含反思)
- 小学科学教科版三年级下册全册思维导图(共24课)
- (三级)智能云服务交付工程师理论考试题库大全-中(多选题)
- 《色彩的对比》教学设计-1色彩的对比-五年级上册美术
- 浙江省中小学心理健康教育课程标准
- 4.4车体主要伤损形式及检修课件讲解
- 甲状腺术后出院健康宣教
- 《柔性棚洞防护结构技术规程》
- 2024年美国专利诉讼报告
- 施工现场临电方案
评论
0/150
提交评论