已阅读5页,还剩78页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Module3 StatisticalProcessControl SPC Methodology 2 PCSElements CreateMeasurementPlan EstablishMonitor SPC ImplementResponseFlowChecklist RFC Element1 Element2 Element3 3 Contents IntroductionWhatisSPCWhatisStabilityWhatisaControlChartHowtoSet upaControlChartTypeofControlChartsAvailableHowtoCalculatetheControlLimitsSPCTrendRulesWhentoReviseControlLimitsProcessCapabilityStudySpeclimitsVSControlLimitsStabilityVSCapabilityControlChartReduction EliminationSPCExpectations 4 WhatisSPC StatisticalAnythingthatdealswiththecollection analysis interpretation presentationofnumericaldataGaininginformationformakinginformeddecisionsProcessCombinationofmachines tools methods materials peopleemployedtoattainprocessspecificationAsimilarprocedure eventthatishappeningrepetitivelyControlTokeepsomethingwithinadesiredconditionMakesomethingbehavethewaywewantittobehave Theuseofstatisticaltechniquessuchascontrolchartstoanalyzeaprocess takeappropriateactionstoachieve maintainastableprocess improveprocesscapability 5 WhatisStability AprocessissaidtobeStableifithasthefollowingproperties PatternappearsrandomConstantprocessmeanUniformvariabilityovertimeNotrends runs shifts erraticups downsImportantformanyreasons Increasedproductivityofengineering manufacturingpersonnelPredictable repeatableresultswithinaspecifiedrange 6 WhatisaControlChart AtrendchartwithcontrollimitsGraphicalrepresentationofprocessperformance wheredataiscollectedatregulartimesequenceofproductionValuabletoolfordifferentiatingbetweencommoncauseandspecialcausevariationEvaluatingwhetheraprocessisorisnotinastateofstatisticalcontrolItletsthedata talk byitself basisfordata drivendecisions 7 ControlLimits Atypicalcontrolchartconsistsofthreelines CL Theaverage measureoflocation processperformancewhentheprocessisin controlUCL LCL Therangeof usual processperformancewhentheprocessisstable Linesdrawn3standarddeviations 3sigma oneachsideofthecenterline 8 ControlChartAssumptions ProcessStabilityTheprocessmustbeinstatisticalcontrolNormalityTheunderlyingprocessdistributionisnormalNote Iftheassumptionsarenotmet thecontrollimitscalculatedaremisleading donotaccuratelyindicate3sigmacontrollimits Seeyoursitestatisticianforadviceoncalculationmethodswhenassumptionsareviolated 9 TestforControlChartAssumptions ProcessStability nooutliers Screenoutoutliersfromthedatabasebeforecomputingfinalcontrollimitsbyusingacontrolchart Anypointbeyondeithercontrollimitisanoutlier Reportnumberofoutliersscreened NormalityPlotanormalprobabilityplotofthedataoroverlayanormalcurveoverthehistogram Normallydistributeddatawillroughlyfallonastraightline TestfornormalitybyusingShapiro WilkWtestinJMP 10 SelectappropriatetypeofcontrolcharttobeusedGatherdatatoestablishthecontrolchart Aminimumof30subgroupsisrequiredoveratimeframeasdeterminedbythesamplingplan PlotthedataintimeorderonaTrendChart HowtoSet upaControlChart 11 Computethecontrollimits plotthemonthetrendchartOutliersidentification exclusionExcludetheOut ofControl OOC pointsoroutliersforwhichthereareverified confirmedspecialcausesfromthechartRe computethecontrollimits excludingtheOOCpointsIftherearefewerthan30pointsremainingatanytime collectmoredata It sveryimportantthatthecontrollimitsarecalculatedusingatleast30subgroups HowtoSet upaControlChart Note RefertoAppendixAforControlChartsforLimitedProduction i e 30subgroups 12 Validatethecomputedcontrollimitsagainstdatacollectedbyre plottingthecontrolchartwithdata newcontrollimitsDothelimitsdetectknownproblems Arethelimitstoosensitive Wouldtheyflagproblemsyoudonotknowhowtoreactto UsethecontrollimitsestablishedtomonitorthecriticalparameteridentifiedForeachparameter everymachineshouldhaveaseparatecontrolchartwithseparatelycomputedcontrollimits HowtoSet upaControlChart 13 ControlChartClassifications ClassificationsofcontrolchartsaredependingonthetypeofdataVariablesdataAcharacteristicmeasuredonacontinuousscaleresultinginanumericalvalueExamples VoidSize BondPullStrength Coplanarity BallHeight etc AttributesdataAcharacteristicmeasuredby ofconforming non conformingtoaspecification Outputisclassifiedaspass failoraccept reject E g BrokenWire LiftedBond FM Chipping BentLead etc Canbeexpressedintermsoffraction percentage countorDPM 14 ControlChart WhentoUse Guidelinesonly X R whensubgroupingofsamplesor Mean Range Chart measurementsisapplicable n 10 X whensubgroupingisnotapplicable Individual duetosingleunitreadingmaytake Chart alongtime unitreadingisextremely expensive etc whenit scommontohavesingle measurementspacedtimeapart X S whensubgroupingofsamplesor Mean Standard measurementsisapplicable Deviation Chart ControlChartsForVariables Note SChartcanalsobeusedforanysubgroupsamplesize n especiallyforautomatedSPCsystemasstandarddeviation s isabetterestimatorforwithinlotvariation n 10 15 WhyMRMethodisusedtodetermineControlLimitsforMean Variability Range StandardDeviation Chart Mostbatchproductionprocesseshavealargerrun to runvariationthanwithin runvariationTraditionalcontrolchartformulasdevelopedinthe20 sbyWalterShewhartconsiderablyunderestimatecontrollimits i e toonarrow 16 Traditionalvs MRMethod Traditionalcontrolchartformulasareused MovingRange MR Methodisused X barControlChart X barControlChart 17 X SChartConcept ConsistsofTwoPortions XChartPlotsthemeanoftheXvaluesinthesampleShowsthechangesofthemeanofonesampletoanotherSChartPlotsthestandarddeviationofasampleShowsthechangesindispersionorprocessvariabilityofonesampletoanother 18 ComputingControlLimitsforX SChart Obtainatleastk 30subgroupsComputetheMeanforeachsubgroupofsizenComputetheStandardDeviationforeachsubgroupComputetheMovingRangeforeachsubgroupmean MRXi Xi Xi 1 ComputetheMovingRangeforeachsubgrouprange MRSi Si Si 1 19 ComputingControllimitsforX RChart ComputetheOverallMean X X1 X2 X3 Xk kComputetheAverageofRange S S1 S2 S3 Sk kComputetheAverageofMovingRangeforthemean MRX MRX2 MRX3 MRX4 MRXk k 1 ComputetheAverageofMovingRangefortherange MRS MRS2 MRS3 MRS4 MRSk k 1 20 ComputetheControlLimits DrawthecontrollimitsonboththeX SchartrespectivelyIfLCL S 0 putas0orN A XChartUCL X X 2 66MRXCL X XLCL X X 2 66MRX ComputingControllimitsforX RChart SChartUCL S S 2 66MRSCL S SLCL S S 2 66MRS 21 Observations Mean MovingRange S D MovingRange Subgroup 1 2 3 4 5 X bar MRX S MR S 1 8 0 7 7 8 1 8 0 7 8 7 92 0 16 2 7 1 6 9 7 4 7 3 7 2 7 18 0 74 0 19 0 03 3 8 0 7 5 7 6 7 8 7 9 7 76 0 58 0 21 0 02 30 7 5 7 8 7 9 7 8 7 6 7 72 0 70 0 16 0 04 Average 7 64 0 68 0 19 0 03 XChartUCL X X 2 66MRX 7 64 2 66 0 68 9 45CL X X 7 64LCL X X 2 66MRX 7 64 2 66 0 68 5 83 ExampleofComputingControlLimitsforX SChart SChartUCL S S 2 66MRS 0 19 2 66 0 03 0 27CL S S 0 55LCL S S 2 66MRS 0 19 2 66 0 03 0 11 22 OpenthedatasetThickness jmp 1 Computethemeanforeachlot SelectSummaryfromtheTablesmenu SelectLotastheGroupvariable HighlightThickness selectMeanfromtheStatisticsmenu Then highlightThickness selectStdDevfromtheStatisticsmenu ClickOK 2 Createanindividualscontrolchartusingthetableoflotmeans ranges SelectControlChartfromtheGraphmenu SelectMean thickness StdDev Thickness astheProcessvariable SelectLotastheSampleLabelvariable Verifyoptionsettings ChartTypeis IR IndividualMeasurementboxisselected MovingRangeboxisnotselected K sigmaisselected andK 3 RangeSpan 2 ClickonOK ExampleofComputingControlLimitsforX SChartusingJMP 23 WARNINGS Group Summarywillsortthenewtableinalphabeticalorderofthegroupingvariable Controlchartsmustalwaysbeplottedintimeorder Therefore ifthesummarytableisnotintimeorder youwillhavetosortthetableincorrecttimeorderbeforemakingthecontrolchart ExampleofComputingControlLimitsforX SChartusingJMP LCL S 0 24 Exercise1 OpenthedatasetExer1 jmp ComputetheX ScontrollimitsusingJMPforleadwidth Whatarethecontrollimits Istheprocessstable 25 InterpretationofX SChart Somespecialcausesofout of controlforXChartChangesinmachinesettingoradjustmentMS to MStechniqueinconsistentChangesinmaterialSChartMachineinneedofrepairoradjustmentNewMSesMaterialsarenotuniform 26 AttributesControlCharts Attributecontrolchartsareusefulwhenitisdifficultorimpracticaltomonitoraprocessnumerically onacontinuousscale AdefectisanindividualfailuretomeetasinglerequirementAdefectiveunitisaunitthatcontainsoneormoredefects 27 ControlChartsForAttributes 28 pChartConcept ItplotsproportionofdefectiveunitsinasampleTheproportionofdefectiveunitsinasamplecanbeintermsoffraction percentordpmItallowsustochartproductionprocesseswheresamplesizecannotbeequal 29 ComputingControlLimitsforpChartwithMR Method Obtainatleastk 30subgroupsorlots Datacollectedin ofunitsinspected ofunitsrejected Computethedefectiveratefromtheithlot i 1 2 k pi ofunitsrejected ofunitsinspectedComputethecontrollimitsusing UCL p p 2 66MRpCL p pLCL p p 2 66MRp WhenLCL 0 putLCL 0orN ADrawthecontrollimitsonpchart 30 Notes TheMR Methoddescribeshowthecontrollimitsarecalculatedassumingequal ornear equal samplesizes Ifthesamplesizesvarybymorethan50 ofeachother youshouldconsultastatistician npChartisapplicablewhenallsubgroupshaveconstantsamplesizes Intermsofpracticality pChartcan shouldbeusedwhensamplesizesareequalaspcarrymoremeaningthan ofrejectedunits np ComputingControlLimitsforpChart 31 Openthedatasetpchart jmp SelectControlChartfromtheGraphmenu Select DefectivesastheProcessvariable SelectLot astheSampleLabelvariable Verifyoptionsettings ChartTypeis IR IndividualMeasurementboxisselected MovingRangeboxisnotselected K sigmaisselected andK 3 RangeSpan 2 ClickonOK ExampleofComputingControlLimitsforpChart 32 Exercise2 ThedatasetExer2 jmpcontainsdefectlevelsforundissolvedflux Thenumberofunitsinspected thenumberofunitscontainingundissolvedfluxwererecordedoverseverallots MakeapChartforUndissolvedFlux Interpretthecontrolchart 33 InterpretationofpChart SomespecialcausesaffectingthepChart ChangesinvariabledataspecificationsChangesininspectionproceduresChangesintechnicianskills e g newtechniciansChangesinpiecepartsquality 34 Time relatedconditionwhereconsecutivedatavaluesarecorrelated i e dependent DatavaluescollectednearbyintimeareverysimilarDatavaluescollectedfarapartintimemaybeverydifferentTendtodriftovertime somedriftgradually othersmayhaveoccasionalsuddenchangesindirectionbetweenperiodsofrelativestability Autocorrelation 35 CautionWhenUsingMRMethod Ifthereisautocorrelation MR SummaryStat willunderestimatethetrueprocessvariation thecontrollimitswillbetoonarrowIfautocorrelationisevident useSigma StdDev Methodforcontrollimitscomputation RefertoAppendixB 36 ControlChartTrendRules Purpose ImprovetheresponsivenessofthecontrolchartDetectmoresubtleshiftsintheprocessmorequicklyDetectirregularitiesbeyondnormal3 thatindicatenon randomnessinprocess 37 HowtoInterpretaControlChart ItisbasedontheNormalDistribution 38 SPCTrendRules Rule 1 AsinglepointbeyondeithercontrollimitUses Detectsverylarge suddenshiftsFalsealarmrate 0 27 Example 39 SPCTrendRules Rule 2 9consecutivepointsonthesamesideofthecenterlineUses DetectssmallshiftsortrendsFalsealarmrate 0 39 Example 40 SPCTrendRules Rule 3 6consecutivepointssteadilyincreasingordecreasingUses DetectsstrongtrendsExample 41 SPCTrendRules Rule 4 14 ormore consecutivepointsarealternatingupanddown Uses Detectssystematiceffects suchasalternatingmachines operators suppliers etc Example 42 SPCTrendRules Rule 5 2outof3consecutivepointsatleast2stddevbeyondthecenterline onthesamesideUses DetectslargechangesFalsealarmrate 0 30 Example 43 SPCTrendRules Rule 6 4outof5consecutivepointsonthechartaremorethan1stddevawayfromtheCLUses Detectsmoderate sizedchangesFalsealarmrate 0 53 Example 44 SPCTrendRules Rule 7 15 ormore consecutivepointsarewithin1stddevoftheCLUses DetectsadecreaseinprocessvariationExample 45 SPCTrendRules Rule 8 8 ormore consecutivepointsareonbothsidesoftheCL butnonearewithin1stddevofit Uses DetectsanincreaseinprocessvariationExample 46 SelectionofTrendRules Usingalarge oftrendrulesisunwise sinceeachtrendrulehasafalsealarmrate thecumulativefalsealarmratecanbeverylargeFalsealarmrateisthefrequencyofcontrolchartsignalswhennothingatallisactuallywrongwiththeprocessFalsealarmsareundesirable Theyreduceproductivity increasecostsfromunnecessarilyshuttingdowntheprocessTheyerodeconfidenceincontrolchartsasusefultools Eventuallyallout of controlsignalsareignored Asaresult quality productivity costwillsuffer 47 TrendRuleRecommendations Allcontrolchartsshouldatleastusethe1strule Point UCLorPoint LCLForanautomatedSPCsystemwithautomatedapplicationofSPCtrendrules it shighlyrecommendedtoadd5thruletodetectlargeshiftsinmean i e 2outof3rule Addotherrulesdependinguponprocessknowledgeabilitytorespondcriticalityofthemonitorsensitivityrequirementsforthemonitor 48 TrendRuleRecommendations OnlyusethetrendrulesthatsignalprocessinstabilitiesforwhichyouarecapableofrespondingJustificationneededfornotusingotherSPCtrendrulesStddev rangechartsmaychoosenottoreacttoPoint LCL howeveraLCLonthesechartscanbevaluablefordetectingmetrologyproblemsorunexpectedprocessimprovement 49 TreatmentofOOCPoints EveryOOCpointsshouldhaveacompletedRFCwhereapplicable documentactionstakenDonecessaryadjustmentorcorrectiontotheequipmentorprocessasinstructedintheRFCwhereapplicable 50 TreatmentofOOCPoints ThecorrespondingequipmentshallbeshutdowniftheOOCsituationscannotbesolved non conformingpartsareproducedpercontrolchartRFCIfanyindividualdatavaluesfallsoutsidetheprocessspecificationlimits thendispositiontheaffectedmaterialpertherequirementsspecifiedintherespectiveprocessspecificationorputthematerialon holdforengineeringdisposition 51 WhentoReviseControlLimits Controllimitsshouldbereviewedperiodically monthlyorquarterly off linetoassessiftheyneedupdating Aminimumof30datapointsareneededbeforere calculatingcontrollimits Re computecontrollimitswhenasignificantprocesschangeisimplementedcurrentcontrollimitstoowideortoonarrow 52 ChangeRatio AchangeratiomaybeutilizedtodetectwhenthecurrentlimitsmaybeinappropriateLCLChangeRatio LCLcurrent LCLcalc srun run calc UCLChangeRatio UCLcalc UCLcurrent srun run calc AlargenegativechangeratiosuggeststighteningacontrollimitAlargepositivechangeratiosuggestswideningthecontrollimitNote srun run calc 2 66MR bar 3 53 GuidelinesforInterpretingChangeRatios Potentiallyaproblem ChangeRatio 1 0Definitelyaproblem ChangeRatio 1 5 GivenThickness jmpexample UCLcurrent 130 0LCLcurrent 70 0Newlycollecteddataresultedthefollowing UCLcalc 119 41LCLcalc 78 72srun run calc 2 66MR 3 20 35 3 6 78UCLChangeRatio UCLcalc UCLcurrent srun run calc 1 56LCLChangeRatio LCLcurrent LCLcalc srun run calc 1 28 Indicatesaneedtochangethecurrentcontrollimits ChangeRatioExample 55 ProcessCapability Processcapabilityistheabilityofaprocesstomeetspecifications Aprocessmustbestablebeforeitscapabilitycanbecomputed NotCapableCapableAcapabilityindexisastatisticthatquantifies describesthecapabilityofaprocess 56 SpecificationLimits Theregionwhereproductisknowntofunctionwellintermsofperformance yield reliability orotherdesiredoutcomeAcceptablerangeofvaluesforaproductparameterDefinewhatisacceptable unacceptableproductDeterminedbyDesignrequirements simulationmodelsEngineeringjudgement typicallyproducteng integration Customeragreement requirementsDatadrivenvalidation ProcesswindowcharacterizationHistoricaldataidentifyingin lineorEOLproblemsUsedtodetermineprocesscapability 57 ControlLimits Calculatedfromdata basedonactualprocessperformanceDescribethenaturalrangeofperformanceofastableprocessDescribetheamountofnaturalprocessvariationUsedtodetermineprocessstability 58 SpecLimitsvs ControlLimits SpecLimitsBasedonperformancerequiredoftheproductWhatthecustomerwants whatwewant Tellsuswhentodispositiontheproduct materialApplyonlytoindividual raw datavalues ControlLimitsBasedonactualhistoricalprocessperformanceWhattheprocessdelivers whatweget Tellsuswhentotakeactionontheprocess equipmentApplytosummarystatistics e g X bar stddev range etc charts Neverusespeclimitsonacontrolchart 59 Stabilityvs Capability Aprocessissaidtobeinstatisticalcontrolwhentheonlysourceofvariationisofnaturalcauses i e nospecialcausesvariationpresent AprocessissaidtobecapablewhenvariationfromnaturalcausesisreducedsuchthatitcanmeetproductspecificationtolerancewhenthecontrollimitsarewellwithinthespecificationlimitsAprocessissaidtobenotcapableifthecontrollimitsareoutsidethespecificationlimits 60 Exercise3 0 2 4 6 8 Interpretation
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公民素养与社会责任
- 教育学的未来蓝图
- 房地产行业解析
- 物体打击事故现场处置方案演练方案
- 2025年水利五大员继续教育考试题目及答案
- 消防安全培训考试题及答案
- 公路水运工程生产安全重大事故隐患判定标准培训考试题及答案
- 2025年八年级信息技术学业水平考试试题及答案
- 2025年机械设备点检员考试题库及答案
- 铁路单招考试题目及答案
- 民宿目标客户群体分析报告
- 七年级体育与健康 身体检查与体质测试教案
- 店铺(初级)营销师认证考试题库附有答案
- 2024智能网联汽车自动驾驶功能仿真试验方法及要求
- GB/T 8492-2024一般用途耐热钢及合金铸件
- 煤矿瓦斯抽放规范(AQ1027-2006)
- 叙事技巧-如何运用插叙和双线叙事
- 上海野生动物园行业分析
- 水资源管理中的多主体参与与协同治理
- 2016-2023年扬州市职业大学高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 体育教学过程
评论
0/150
提交评论